Date of Award

6-2020

Document Type

Dissertation

Degree Name

Doctor of Philosophy (PhD)

Department

Department of Electrical and Computer Engineering

First Advisor

Brett J. Borghetti, PhD

Abstract

Seismic signal processing at the IDC is critical to global security, facilitating the detection and identification of covert nuclear tests in near-real time. This dissertation details three research studies providing substantial enhancements to this pipeline. Study 1 focuses on signal detection, employing a TCN architecture directly against raw real-time data streams and effecting a 4 dB increase in detector sensitivity over the latest operational methods. Study 2 focuses on both event association and source discrimination, utilizing a TCN-based triplet network to extract source-specific features from three-component seismograms, and providing both a complimentary validation measure for event association and a one-shot classifier for template-based source discrimination. Finally, Study 3 focuses on event localization, and employs a TCN architecture against three-component seismograms in order to confidently predict backazimuth angle and provide a three-fold increase in usable picks over traditional polarization analysis.

AFIT Designator

AFIT-ENG-DS-20-J-004

DTIC Accession Number

AD1104459

Share

COinS