Date of Award

6-2006

Document Type

Thesis

Degree Name

Master of Science

Department

Department of Electrical and Computer Engineering

First Advisor

Barry E. Mullins, PhD

Abstract

Routing in Mobile Ad Hoc Networks (MANETs) presents unique challenges not encountered in conventional networks. Predicted Associativity Routing (PAR) is a protocol designed to address reliability in MANETs. Using associativity information, PAR calculates the expected lifetime of neighboring links. Nodes use this expected lifetime, and their neighbor's connectivity to determine a residual lifetime. The routes are selected from those with the longest residual lifetimes. In this way, PAR attempts to improve the reliability of discovered routes. PAR is compared to AODV using a variety of reliability and performance metrics. Despite its focus on reliability, PAR does not provide more reliable routes. Rather, AODV produces routes which last as much as three times longer than PAR. However, PAR delivers more data and has greater throughput. Both protocols are affected most by the node density of the networks. Node density accounts for 48.62% of the variation in route lifetime in AODV, and 70.66% of the variation in PAR. As node density increases from 25 to 75 nodes route lifetimes are halved, while throughput increases drastically with the increased routing overhead. Furthermore, PAR increases end-to-end delay, while AODV displays better efficiency.

AFIT Designator

AFIT-GCE-ENG-06-05

DTIC Accession Number

ADA454372

Share

COinS