Date of Award

3-24-2016

Document Type

Thesis

Degree Name

Master of Science

Department

Department of Electrical and Computer Engineering

First Advisor

Richard K Martin, PhD.

Abstract

Radio Tomographic Imaging (RTI) is a form of Device Free Passive Localization (DFPL) that utilizes the Received Signal Strength (RSS) values from a collection of wireless transceivers to produce an image in order to localize a subject within a Wireless Sensor Network (WSN). Radio Mapping is another form of DFPL that can utilize the same RSS values from a WSN to localize a subject by comparing recent values to a set of calibration data. RTI and Radio Mapping have never been directly compared to one another as a means of localization within a WSN. The goal of this research is to compare using TelosB mote devices these approaches in a side-by-side manner. A real world WSN was constructed and both RTI and Radio Mapping methodologies were applied to identical data sets with the results compared and discussed. Initial results show that both methodologies have inherent advantages and disadvantages respective to one another; Radio Mapping performs significantly better in WSNs with a low number of transceivers being 100% accurate within the bounds of this experimentation, while RTI has significantly more simple calibration procedures.

AFIT Designator

AFIT-ENG-MS-16-M-044

DTIC Accession Number

AD1053868

Share

COinS