Date of Award

3-2008

Document Type

Thesis

Degree Name

Master of Science in Electrical Engineering

Department

Department of Electrical and Computer Engineering

First Advisor

Yong C. Kim, PhD

Abstract

A one dimensional Kalman Filter algorithm provided in Matlab is used as the basis for a Very High Speed Integrated Circuit Hardware Description Language (VHDL) model. The JAVA programming language is used to create the VHDL code that describes the Kalman filter in hardware which allows for maximum flexibility. A one-dimensional behavioral model of the Kalman Filter is described, as well as a one-dimensional and synthesizable register transfer level (RTL) model with optimizations for speed, area, and power. These optimizations are achieved by a focus on parallelization as well as careful Kalman filter sub-module algorithm selection. Newton-Raphson reciprocal is the chosen algorithm for a fundamental aspect of the Kalman filter, which allows efficient high-speed computation of reciprocals within the overall system. The Newton-Raphson method is also expanded for use in calculating square-roots in an optimized and synthesizable two-dimensional VHDL implementation of the Kalman filter. The two-dimensional Kalman filter expands on the one-dimensional implementation allowing for the tracking of targets on a real-world Cartesian coordinate system.

AFIT Designator

AFIT-GE-ENG-08-10

DTIC Accession Number

ADA487116

Share

COinS