Date of Award

3-2008

Document Type

Thesis

Degree Name

Master of Science in Computer Science

Department

Department of Electrical and Computer Engineering

First Advisor

Kenneth M. Hopkinson, PhD

Abstract

With increased reliance on communications to conduct military operations, information centric network management becomes vital. A Defense department study of information management for net-centric operations lists the need for tools for information triage (based on relevance, priority, and quality) to counter information overload, semi-automated mechanisms for assessment of quality and relevance of information, and advances to enhance cognition and information understanding in the context of missions [30]. Maximizing information utility to match mission objectives is a complex problem that requires a comprehensive solution in information classification, in scheduling, in resource allocation, and in QoS support. Of these research areas, the resource allocation mechanism provides a framework to build the entire solution. Through an agent based mindset, the lessons of robot control architecture are applied to the network domain. The task of managing information flows is achieved with a hybrid reactive architecture. By demonstration, the reactive agent responds to the observed state of the network through the Unified Behavior Framework (UBF). As information flows relay through the network, agents in the network nodes limit resource contention to improve average utility and create a network with smarter bandwidth utilization. While this is an important result for information maximization, the agent based framework may have broader applications for managing communication networks.

AFIT Designator

AFIT-GCS-ENG-08-19

DTIC Accession Number

ADA482972

Share

COinS