Date of Award

6-2-2008

Document Type

Thesis

Degree Name

Master of Science in Aeronautical Engineering

Department

Department of Aeronautics and Astronautics

First Advisor

Paul I. King, PhD

Abstract

Waste heat from a pulse detonation engine (PDE) was extracted via zeolite catalyst coated concentric tube-counter flow heat exchangers to produce supercritical pyrolytic conditions for JP-8 fuel. A sampling system and method were developed that enabled samples of reacted fuel to be extracted during steady state operation. Samples were taken over a range of heat exchanger exit temperatures from 820 K (1016° F) to 940 K (1232° F). Offline analysis of liquid and vapor fuel samples indicated fuel decomposition via typical pyrolytic reaction pathways. The liquid analysis showed conversion of parent fuel components with formation of unsaturates (aromatics and alkenes) and smaller alkanes. The gaseous products consisted of predominantly C1-C3 alkanes and alkenes (> 75% of total vapor yield) with moderate amounts of hydrogen and C4-C6 alkanes and alkenes. The components that were present in the stressed fuel samples were more detonable and could be linked to improved PDE performance. The ignition time decreased by over 20% as temperature increased from 820 K (1016° F) to 935 K (1224° F) and by more than 30% when compared to unreacted (flash vaporized) JP-8.

AFIT Designator

AFIT-GAE-ENY-08-J08

DTIC Accession Number

ADA482863

Share

COinS