Date of Award

9-15-2016

Document Type

Dissertation

Degree Name

Doctor of Philosophy (PhD)

Department

Department of Electrical and Computer Engineering

First Advisor

Kenneth M. Hopkinson, PhD.

Abstract

This dissertation presents automated methods based on behavioral game theory and model checking to improve the cybersecurity of cyber-physical systems (CPSs) and advocates teaching certain foundational principles of these methods to cybersecurity students. First, it encodes behavioral game theory's concept of level-k reasoning into an integer linear program that models a newly defined security Colonel Blotto game. This approach is designed to achieve an efficient allocation of scarce protection resources by anticipating attack allocations. A human subjects experiment based on a CPS infrastructure demonstrates its effectiveness. Next, it rigorously defines the term adversarial thinking, one of cybersecurity educations most important and elusive learning objectives, but for which no proper definition exists. It spells out what it means to think like a hacker by examining the characteristic thought processes of hackers through the lens of Sternberg's triarchic theory of intelligence. Next, a classroom experiment demonstrates that teaching basic game theory concepts to cybersecurity students significantly improves their strategic reasoning abilities. Finally, this dissertation applies the SPIN model checker to an electric power protection system and demonstrates a straightforward and effective technique for rigorously characterizing the degree of fault tolerance of complex CPSs, a key step in improving their defensive posture.

AFIT Designator

AFIT-ENG-DS-16-S-010

DTIC Accession Number

AD1017873

Share

COinS