Date of Award
3-9-2009
Document Type
Thesis
Degree Name
Master of Science
Department
Department of Operational Sciences
First Advisor
Kenneth W. Bauer, PhD
Abstract
Detecting and identifying objects of interest is the goal of all remote sensing. New advances, specifically in hyperspectral imaging technology have provided the analyst with immense amounts of data requiring evaluation. Several filtering techniques or anomaly detection algorithms have been proposed. However, most new algorithms are insufficiently verified to be robust to the broad range of hyperspectral data being made available. One such algorithm, AutoGAD, is tested here via two separate robust parameter design techniques to determine optimal parameters for consistent performance on a range of data with large attribute variances. Additionally, the results of the two techniques are compared for overall effectiveness. The results of the test as well as optimal parameters for AutoGAD are presented and future research efforts proposed.
AFIT Designator
AFIT-GOR-ENS-09-05
DTIC Accession Number
ADA500322
Recommended Citation
Davis, Matthew T., "Using Multiple Robust Parameter Design Techniques to Improve Hyperspectral Anomaly Detection Algorithm Performance" (2009). Theses and Dissertations. 2506.
https://scholar.afit.edu/etd/2506
Included in
Other Operations Research, Systems Engineering and Industrial Engineering Commons, Remote Sensing Commons