Date of Award
3-22-2019
Document Type
Thesis
Degree Name
Master of Science in Computer Science
Department
Department of Electrical and Computer Engineering
First Advisor
Scott L. Nykl, PhD
Abstract
Aerial real-time surveillance exists in a paradigm balancing the constraints of delivering high quality data and transporting data quickly. Typically, to have more of one, sacrifices must be made to the other. This is true of the environment in which an Unmanned Aerial Vehicle (UAV) operates, where real-time communication may be done through a low-bandwidth satellite connection resulting in low-resolution data, and serves as the primary limiting factor in all intelligence operations. Through the use of efficient computer vision techniques, we propose a new Structure from Motion (SfM) method capable of compressing high-resolution data, and delivering that data in real-time. Specifically demonstrating a 90 percent compression of original video imagery at 4 Hz which equates to an 80x computation time speed-up compared to traditional SfM methods, with an added benefit of presenting the original 2D intelligence data as a 3D virtual model
AFIT Designator
AFIT-ENG-MS-19-M-007
DTIC Accession Number
AD1074014
Recommended Citation
Arnold, Christian M.A., "High Resolution Low-Bandwidth Real-Time Reconnaissance using Structure from Motion with Planar Homography Estimation" (2019). Theses and Dissertations. 2243.
https://scholar.afit.edu/etd/2243