Date of Award
3-10-2010
Document Type
Thesis
Degree Name
Master of Science in Aeronautical Engineering
Department
Department of Aeronautics and Astronautics
First Advisor
Anthony N. Palazotto, PhD
Abstract
Micro air vehicles (MAVs) are intended for future intelligence, surveillance, and reconnaissance use. To adequately fulfill a clandestine capacity, MAVs must operate in close proximity to their intended target without eliciting counter-observation. This objective, along with DARPA’s constraint of a sub-15 centimeter span, requires future MAVs to mimic insect appearance and flight characteristics. This thesis describes an experimental method for conducting a structural analysis of a Manduca Sexta (hawkmoth) forewing. Geometry is captured via computed tomography (CT), and frequency data is collected using laser vibrometry in air and vacuum. A finite element (FE) model is constructed using quadratic beams and general-purpose shell elements, and a linear dynamic analysis is conducted. A preliminary verification of the FE model is carried out to ensure the Manduca Sexta forewing is adequately characterized, providing a basis for future fluid-structural interaction computations. Included is a study regarding the aeroelastic effects on flapping-wing insect flight, and an analysis of the structural dynamic anomalies of conventional, flat, semi-rigid flapping wings.
AFIT Designator
AFIT-GAE-ENY-10-M22
DTIC Accession Number
ADA517375
Recommended Citation
Sims, Travis W., "A Structural Dynamic Analysis of a Manduca Sexta Forewing" (2010). Theses and Dissertations. 2053.
https://scholar.afit.edu/etd/2053