Date of Award

3-10-2010

Document Type

Thesis

Degree Name

Master of Science in Aeronautical Engineering

Department

Department of Aeronautics and Astronautics

First Advisor

Donald L. Kunz, PhD

Abstract

A novel approach for formulating and solving for the dynamic response of multibody systems has been developed using Hamilton’s Law of Varying Action as its unifying principle. In order to assure that the associated computer program is sufficiently robust when applied across a wide range of dynamic systems, the program must be verified and validated. The purpose of the research was to perform the verification and validation of the program. Results from the program were compared with closed-form and numerical solutions of simple systems, such as a simple pendulum and a rotating pendulum. The accuracy of the program for complex systems for which there is no closed-form solution, such as a double pendulum and others, were assessed by calculating energy conservation and constraint violation. The results of this research confirm the validity of this novel approach to multibody system analysis, and pave the way for its application to increasingly complex configurations.

AFIT Designator

AFIT-GAE-ENY-10-M10

DTIC Accession Number

ADA516866

Share

COinS