Date of Award

6-18-2015

Document Type

Thesis

Degree Name

Master of Science

Department

Department of Aeronautics and Astronautics

First Advisor

Paul I. King, PhD.

Abstract

Cell sizes of fuel and oxidizer combinations are the fundamental length scale of detonations. The detonation cell size is correlated to dynamic detonation properties. One of the properties, detonability is the motivation for this research. In order to design combustion chambers for detonating engines, specifically PDEs and RDEs, the cell size is needed. Higher than atmospheric mixture pressure detonation cell sizes are important for scaling the combustion chambers, and before this research no data existed for hydrogen and air detonation cell sizes at mixture pressures up to 10.0 atm. This research successfully validated a new detonation cell size measurement technique and measured 15 cases for varying mixture pressures up to 10 atm and equivalence ratios. The results were concurrent with previous trends, as increase in mixture pressure decreased detonation cell size and a decrease in equivalence ratio from stoichiometric increased detonation cell size. The experimental results were used to establish a correlation that estimates hydrogen and air detonation cell size given initial mixture pressure and equivalence ratio.

AFIT Designator

AFIT-ENY-MS-15-J-045

DTIC Accession Number

ADA624214

Share

COinS