Date of Award

9-1-2018

Document Type

Dissertation

Degree Name

Doctor of Philosophy (PhD)

Department

Department of Electrical and Computer Engineering

First Advisor

Brian J. Lunday, PhD.

Abstract

The U.S. military's ability to project military force is being challenged. This research develops and demonstrates the application of three respective sensor location, relocation, and network intrusion models to provide the mathematical basis for the strategic engagement of emerging technologically advanced, highly-mobile, Integrated Air Defense Systems. First, we propose a bilevel mathematical programming model for locating a heterogeneous set of sensors to maximize the minimum exposure of an intruder's penetration path through a defended region. Next, we formulate a multi-objective, bilevel optimization model to relocate surviving sensors to maximize an intruder's minimal expected exposure to traverse a defended border region, minimize the maximum sensor relocation time, and minimize the total number of sensors requiring relocation. Lastly, we present a trilevel, attacker-defender-attacker formulation for the heterogeneous sensor network intrusion problem to optimally incapacitate a subset of the defender's sensors and degrade a subset of the defender's network to ultimately determine the attacker's optimal penetration path through a defended network.

AFIT Designator

AFIT-ENS-DS-18-S-035

DTIC Accession Number

AD1063233

Share

COinS