Date of Award

3-23-2018

Document Type

Thesis

Degree Name

Master of Science

Department

Department of Systems Engineering and Management

First Advisor

David R. Jacques, PhD.

Abstract

Modernizing airfield damage assessment has long been a priority mission at the Air Force Civil Engineer Center (AFCEC). Previously, AFCEC has made advances to expedite unexploded ordnance (UXO) neutralization and pavement repair. Missing from these initiatives is the initial assessment component. This thesis expands the idea of using Small Unmanned Aerial Systems (SUAS), applies it to the Air Force mission, and provides SUAS vehicle configuration and sensor recommendations. In this study, 25 civil engineer officers reviewed airfield imagery gathered using two small air vehicles. For the first review, participants attempted to identify UXOs and foreign object debris (FOD) in a computer interface that leverages images collected by a fixed-wing air vehicle. The second review uses a two-dimensional map created using a hex-rotor. The results of both systems were then compared to the status quo. Resulting statistics indicate that, irrespective of image resolution, additional analysis time does not result in greater object detection or correct identification. Overall, this thesis concludes that SUAS use for afield damage assessment shows promise. Moreover, they can provide the Air Force improved precision for locating UXOs and FOD, as well as estimate dimensions of damage. Dedicating resources to developing this technology will also assist with improving object detection and manpower efficiency. Further research is required for optimal image characterization requisite for reducing and/or eliminating the occurrence of false negative events.

AFIT Designator

AFIT-ENV-MS-18-M-188

DTIC Accession Number

AD1056460

Share

COinS