Date of Award
3-22-2018
Document Type
Thesis
Degree Name
Master of Science in Systems Engineering
Department
Department of Systems Engineering and Management
First Advisor
David R. Jacques, PhD.
Abstract
This thesis compares the ability of both traditional and CubeSat remote sensing architectures to fulfill a set of mission requirements for a remote sensing scenario. Mission requirements originating from a hurricane disaster response scenario are developed to derive a set of system requirements. Using a Model-based Systems Engineering approach, these system requirements are used to develop notional traditional and CubeSat architecture models. The technical performance of these architectures is analyzed using Systems Toolkit (STK); the results are compared against Measures of Effectiveness (MOEs) derived from the disaster response scenario. Additionally, systems engineering cost estimates are obtained for each satellite architecture using the Constructive Systems Engineering Cost Model (COSYSMO). The technical and cost comparisons between the traditional and CubeSat architectures are intended to inform future discussions relating to the benefits and limitations of using CubeSats to conduct operational missions.
AFIT Designator
AFIT-ENV-MS-18-M-187
DTIC Accession Number
AD1056456
Recommended Citation
Cipera, Daniel L., "Comparison of Traditional Versus CubeSat Remote Sensing: A Model-Based Systems Engineering Approach" (2018). Theses and Dissertations. 1881.
https://scholar.afit.edu/etd/1881