Date of Award

3-11-2011

Document Type

Thesis

Degree Name

Master of Science

Department

Department of Engineering Physics

First Advisor

Robert Hengehold, PhD.

Abstract

The purpose of this research is to understand the effect of radiation on HfO2 thin films, and to compare the quality of HfO2 thin films produced by both atomic layer deposition (ALD) and pulsed laser deposition (PLD); PLD samples had varying substrate temperatures during deposition (300°C, 500°C, and 750°C). The entirety of this research was conducted using cathodoluminescence (CL) as the examination method. The excitation source was a Kimball Physics EMG-12 electron gun. The photomultiplier tube contained a gallium arsenide photocathode. Measurements were made with beam energies ranging from 1 to 10 keV and beam currents ranging from 30 to 50 μA, both at room temperature and at 7K. The experimentally-determined band gap of HfO2 was consistent with published data, but many other features found in the literature were not present in the CL data obtained. HfO2 appeared to be radiation hard up to the levels of radiation to which it was exposed. A higher substrate temperature during deposition for PLD samples produced a better material than lower temperatures. ALD produced a more consistent thickness but PLD ultimately produced a better quality material with respect to the spectrum obtained.

AFIT Designator

AFIT-GAP-ENP-11-M08

DTIC Accession Number

ADA538491

Share

COinS