Date of Award

3-11-2011

Document Type

Thesis

Degree Name

Master of Science

Department

Department of Electrical and Computer Engineering

First Advisor

Barry E. Mullins, PhD.

Abstract

This thesis addresses the problem of identifying email spear phishing attacks, which are indicative of cyber espionage. Spear phishing consists of targeted emails sent to entice a victim to open a malicious file attachment or click on a malicious link that leads to a compromise of their computer. Current detection methods fail to detect emails of this kind consistently. The SPEar phishing Attack Detection system (SPEAD) is developed to analyze all incoming emails on a network for the presence of spear phishing attacks. SPEAD analyzes the following file types: Windows Portable Executable and Common Object File Format (PE/COFF), Adobe Reader, and Microsoft Excel, Word, and PowerPoint. SPEAD's malware detection accuracy is compared against five commercially-available email anti-virus solutions. Finally, this research quantifies the time required to perform this detection with email traffic loads emulating an Air Force base network. Results show that SPEAD outperforms the anti-virus products in PE/COFF malware detection with an overall accuracy of 99.68% and an accuracy of 98.2% where new malware is involved. Additionally, SPEAD is comparable to the anti-virus products when it comes to the detection of new Adobe Reader malware with a rate of 88.79%. Ultimately, SPEAD demonstrates a strong tendency to focus its detection on new malware, which is a rare and desirable trait. Finally, after less than 4 minutes of sustained maximum email throughput, SPEAD's non-optimized configuration exhibits one-hour delays in processing files and links.

AFIT Designator

AFIT-GCE-ENG-11-05

DTIC Accession Number

ADA540272

Share

COinS