Date of Award

3-11-2011

Document Type

Thesis

Degree Name

Master of Science

Department

Department of Aeronautics and Astronautics

First Advisor

Marc Polanka, PhD.

Abstract

The ever increasing use of man portable unmanned aerial vehicles, UAV, by the US military in a wide array of environmental conditions calls for the investigation of engine performance under these conditions. Previous research has focused on individual changes in pressure or temperature conditions of the air stream entering the engine. The need was seen for a facility capable of providing an environment representative of various simulated altitude conditions. A mobile test facility was developed to test small internal combustion engines with peak powers less than 10 hp. A representative engine was tested over a range of speeds from 2000 RPM to 9000 RPM at every 1000 RPM. The throttle was set to 50%, 75%, and 100% open at each of the speeds tested. The test engine was tested at environmental conditions representing sea level standard day conditions, 1500 m conditions and 3000 m conditions. The engine torque, fuel flow rate, and air flow rate were measured at each test point to determine the impact of combined pressure and temperature variations on engine performance. During the process of testing the engine and the test stand it was determined that the fuel to air ratio for the engine had a significant impact on engine operation. The test engine failed to under fuel rich or fuel lean conditions.

AFIT Designator

AFIT-GAE-ENY-11-M28

DTIC Accession Number

ADA539960

Share

COinS