Date of Award
3-22-2012
Document Type
Thesis
Degree Name
Master of Science in Engineering Management
Department
Department of Systems Engineering and Management
First Advisor
Michael E. Miller, PhD.
Abstract
Energy-conscious facility designs strive to include natural daylight in workspaces. To improve the efficiency of illumination, significant efforts are underway to adopt more efficient light emitting diode (LED) lamps and to effectively integrate daylight with active dimming of electric lighting. However, the correlated color temperature (CCT) and spectral content of daylight varies throughout the day while existing electric light sources produce light with a fixed CCT, resulting in mixed-illumination environments. The color rendering requirements for a lamp that permits the selection of color temperature across a significant portion of the daylight locus is explored. The analysis indicates that it is possible to form a lamp having only two independently controllable groups of narrowband emitters that is capable of producing light that achieves a nearly colorimetric match to daylight from 4000-10,000K. A prototype LED lamp, with a simple control and novel drive scheme, which produces white light over a range of CCTs by blending light from a pair of sources, each with numerous, tuned LED emitters, is demonstrated. The prototype validates the lamp concept -- producing light over a broad range of CCT values (4000-8000K) while maintaining a stable color quality rendering score without requiring computations for spectral approximation once employed.
AFIT Designator
AFIT-GEM-ENV-12-M06
DTIC Accession Number
ADA558276
Recommended Citation
Gilman, Jacob M., "Simplified Daylight Spectrum Approximation by Blending Two Light Emitting Diode Sources" (2012). Theses and Dissertations. 1262.
https://scholar.afit.edu/etd/1262