Date of Award

6-14-2012

Document Type

Thesis

Degree Name

Master of Science

Department

Department of Electrical and Computer Engineering

First Advisor

Milo W. Hyde IV, PhD.

Abstract

Branch points arise in optical transmissions due to strong atmospheric turbulence, long propagation paths, or a combination of both. Unfortunately, these conditions are very often present in desired operational scenarios for laser weapon systems, optical communication, and covert imaging, which suffer greatly when traditional adaptive optics systems either cannot sense branch points or implement non-optimal methods for sensing and correcting branch points. Previous research by Pellizzari presented a thorough analysis of various novel branch point tolerant reconstructors in the absence of noise. In this research a realistic model of the Air Force Institute of Technology's adaptive optics system is developed and used for the first realistic tests of these branch point tolerant reconstructors. Utilizing a self-referencing interferometer as the high-order wavefront sensor -- this type of sensor being theoretically immune to scintillation -- this effort has extended previous theoretical work by adding realistic noise effects to the SRI's measurements before reconstructing the wavefronts and applying the control law. Not only is the adaptive optics correction shown to outperform the traditional techniques by as much as 126%, but several new theories and refinements to existing theories were discovered along the way. This study provides a foundation to guide hardware implementation in the future, where noise effects will be present.

AFIT Designator

AFIT-GE-ENG-12-45

DTIC Accession Number

ADA562776

Share

COinS