Date of Award

6-14-2012

Document Type

Thesis

Degree Name

Master of Science

Department

Department of Electrical and Computer Engineering

First Advisor

Barry E. Mullins, PhD.

Abstract

Virtual machine introspection (VMI) is intended to provide a secure and trusted platform from which forensic information can be gathered about the true behavior of malware within a guest. However, it is possible for malware to escape a guest into the host and for hypervisor rootkits, such as BluePill, to stealthily transition a native OS into a virtualized environment. This research examines the effectiveness of selected detection mechanisms against hardware-assisted virtualization rootkits (HAV-R) within a nested virtualized environment. It presents the design, implementation, analysis, and evaluation of a hypervisor rootkit detection system which exploits both processor and translation lookaside buffer-based mechanisms to detect hypervisor rootkits within a variety of nested virtualized systems. It evaluates the effects of different types of virtualization on hypervisor rootkit detection and explores the effectiveness in-guest HAV-R obfuscation efforts. The results provide convincing evidence that the HAV-Rs are detectable in all SVMI scenarios examined, regardless of HAV-R or virtualization type. Also, that the selected detection techniques are effective at detection of HAV-R within nested virtualized environments, and that the type of virtualization implemented in a VMI system has minimal to no effect on HAV-R detection. Finally, it is determined that in-guest obfuscation does not successfully obfuscate the existence of HAV-R.

AFIT Designator

AFIT-GCO-ENG-12-20

DTIC Accession Number

ADA563168

Share

COinS