Date of Award
3-22-2012
Document Type
Thesis
Degree Name
Master of Science
Department
Department of Mathematics and Statistics
First Advisor
Matthew C. Fickus, PhD.
Abstract
Suppose we are given a video of a rotating object and suppose we want to determine the rate of rotation solely from the video itself and its known frame rate. In this thesis, we present a new mathematical operator called the Geometric Sum Transform (GST) that can help one determine the angular frequency of the object in question. The GST is a generalization of the discrete Fourier transform (DFT) and as such, the two transforms have much in common. However, whereas the DFT is applied to a sequence of scalars, the GST can be applied to a sequence of vectors. Most importantly, we show that the GST, like the DFT, can (1) be used to estimate frequency and (2) can be computed surprisingly quickly. Indeed, we provide a Fast Geometric Sum Transform (FGST) algorithm that computes the GST in O(N logN) matrix-vector multiplications, where N is the number of images in the video sequence. This is a vast improvement over the O(N2) such multiplications required for a direct computation of the GST. The remainder of this thesis is devoted to proving other properties of the GST and giving proof-of-concept numerical examples.
AFIT Designator
AFIT-GAM-ENC-12-02
DTIC Accession Number
ADA557236
Recommended Citation
Smith, Lindsay N., "Determining Angular Frequency from a video with a Generalized Fast Fourier Transform" (2012). Theses and Dissertations. 1024.
https://scholar.afit.edu/etd/1024