Date of Award

3-26-2015

Document Type

Thesis

Degree Name

Master of Science in Operations Research

Department

Department of Operational Sciences

First Advisor

Dr Darryl K. Ahner, PhD.

Abstract

Nations transitioning into conflict is an issue of national interest. This study considers various data for inclusion in a statistical model that predicts the future state of the world where nations will either be in a state of violent conflict or not in violent conflict based on available historical data. Logistic regression is used to construct and test various models to produce a parsimonious world model with 15 variables. Further analysis shows that nations differ significantly by geographical area. Therefore six sub-models are constructed for differing geographical areas of the world. The dominant variables for each sub-model vary, suggesting a complex world that cannot be modeled as a whole. Insights and conclusions are gathered from the models, a best model is proposed, and predictions are made for the state of the world in 2015. Accuracy of predictions via validation surpasses 80%. Eighty-five nations are predicted to be in a state of violent conflict in 2015, seventeen of them are new to conflict since the last published list in 2013. A prediction tool is created to allow war-game subject matter experts and students to identify future predicted violent conflict and the responsible variables.

AFIT Designator

AFIT-ENS-MS-15-M-112

DTIC Accession Number

ADA615064

Share

COinS