10.11648/j.jenr.20190802.15">
 

Document Type

Article

Publication Date

6-10-2019

Abstract

This research presents the development of linear regression models to predict horizontal photovoltaic power output. We collected a dataset from 14 global Department of Defense (DoD) installations over a timeframe of one year using an experimental apparatus, resulting in 24,179 usable data points. We developed a linear model to predict power output, which incorporated site-specific weather and geographical characteristics, along with Köppen-Geiger climate classifications in order to determine the effect of adding climate to the model. After performing a Wald test between the full model and a reduced model without Köppen-Geiger climate variables, it was determined that including Köppen-Geiger climate variables improved the model’s ability to account for horizontal photovoltaic power variation by 3%. Although adding Köppen-Geiger variables provided added value when modeling the training dataset, these variables were less effective in predicting the validation dataset. From the analysis, the ideal Köppen-Geiger region was determined to be a warm temperate main classification, a fully humid precipitation classification and a warm summer temperature classification. This region possessed a 30% greater average power production than the mean value of the base climate classification. We found that the cost-effectiveness of a photovoltaic array depends on Köppen-Geiger climate regions, in addition to weather characteristics and the orientation of the array.

Comments

©2019 The Authors.

This article is licensed under a Creative Commons Attribution 4.0 International License (CC BY 4.0), which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Source Publication

Journal of Energy and Natural Resources (e-ISSN 2330-7404)

Share

COinS