Examining Military Medical Evacuation Dispatching Policies Utilizing a Markov Decision Process Model of a Controlled Queueing System

Document Type


Publication Date



Military medical planners must develop dispatching policies that dictate how aerial medical evacuation (MEDEVAC) units are utilized during major combat operations. The objective of this research is to determine how to optimally dispatch MEDEVAC units in response to 9-line MEDEVAC requests to maximize MEDEVAC system performance. A discounted, infinite horizon Markov decision process (MDP) model is developed to examine the MEDEVAC dispatching problem. The MDP model allows the dispatching authority to accept, reject, or queue incoming requests based on a request’s classification (i.e., zone and precedence level) and the state of the MEDEVAC system. A representative planning scenario based on contingency operations in southern Afghanistan is utilized to investigate the differences between the optimal dispatching policy and three practitioner-friendly myopic policies. Two computational experiments are conducted to examine the impact of selected MEDEVAC problem features on the optimal policy and the system performance measure. Several excursions are examined to identify how the 9-line MEDEVAC request arrival rate and the MEDEVAC flight speeds impact the optimal dispatching policy. Results indicate that dispatching MEDEVAC units considering the precedence level of requests and the locations of busy MEDEVAC units increases the performance of the MEDEVAC system. These results inform the development and implementation of MEDEVAC tactics, techniques, and procedures by military medical planners. Moreover, an analysis of solution approaches for the MEDEVAC dispatching problem reveals that the policy iteration algorithm substantially outperforms the linear programming algorithms executed by CPLEX 12.6 with regard to computational effort. This result supports the claim that policy iteration remains the superlative solution algorithm for exactly solving computationally tractable Markov decision problems.


Copyright statement: © US Government 2018

The "Link to Full Text" button on this page loads the journal article hosted at the publisher’s website. Provided by the Springer Nature SharedIt content sharing program. Please attribute the work using the citation indicated below.



Source Publication

Annals of Operations Research