Document Type


Publication Date



While many bio-inspired flapping wing micro air vehicle wing designs continue to be conceived and studied in earnest, a general consensus of which physical attributes of the biological entity are important for flight is still at-large. It is proposed herein that the eigenstructure of the wing should figure prominently among rigorous engineering metrics for guiding flapping wing micro air vehicle wing designs at the scales of large insects. With virtually no compelling work done in this area to date, the method and results of system identification tests for the forewings of a representative sample of hawkmoth (Manduca Sexta) are presented, revealing the underlying structural nature of this incredibly agile flyer's wings. Despite their inherent biological variability, these wings show very little variability in eigenstructure which may suggest it as a critical attribute for robust flight. Further supporting this hypothesis, the wings of four other insect species are briefly examined and show remarkable similarity with the hawkmoth wing's eigenstructure.


International Journal of Micro AIr Vehiclesis a Sage "Pure Gold" Open Access Journal. Posted in accordance with Sage policies. Sourced from the published version of record cited below.



Source Publication

International Journal of Micro Air Vehicles