Date of Award


Document Type


Degree Name

Master of Science


Department of Electrical and Computer Engineering

First Advisor

Meir Pachter


This thesis describes the application of the multiple-input multiple- output (MIMO) Quantitative Feedback Theory (QFT) design technique to the design of a digital flight control system for the Lambda Unmanned Research Vehicle (URV). The QFT technique allows the synthesis of a control system which is robust in the presence of structured plant uncertainties. Uncertainties considered in this design are the aircraft's plant variation within the flight envelope and the effects of damage to aircraft control surfaces. Mathematical models of control surface failure effects on aircraft dynamics are derived and used to modify an existing small perturbation model of the Lambda. The QFT technique is applied to design a control system utilizing aircraft pitch rate, roll rate and sideslip angle as feedback variables. The inherent cross-coupling rejection qualities of QFT and an aileron-rudder interconnect are utilized to design a control system which results in a coordinated flight. An outer-loop autopilot is then designed around the QFT controller to further assist turn coordination. Sensor noise effects on aircraft states are also analyzed. Quantitative feedback theory, Flight control system, Aircraft damage.

AFIT Designator


DTIC Accession Number



The author's Vita page is omitted.