Troy Irwin

Date of Award


Document Type


Degree Name

Master of Science in Astronautical Engineering


Department of Aeronautics and Astronautics

First Advisor

Curtis H. Spenny, PhD


Electrodynamic propulsion (EDP) uses forces resulting from electric currents in conductors as a spacecraft travels through a magnetic field. A vehicle-independent expression for the specific power required for any maneuver is derived and used to assess EDP feasibility. Analytical expressions for the accelerations and combined current-conductor vector required to change the orbital plane or the argument of perigee are developed based on Lagranges planetary equations. Solutions to the forced Clohessy-Wiltshire equations are developed to study iii-plane rendezvous. Results show EDP can change inclination or right ascension of the ascending mode at approximately 0.4 degrees/day with current spacecraft specific power technology. The effects of the Earths oblateness on a 24 hour, 90 degree inclination Molniya orbit can be negated. Rendezvous is possible with EDP, and approaches along the target velocity vector with no attitude change are possible with current spacecraft specific power. Approaches involving altitude changes will be possible when modest spacecraft power improvements are made. EDP allows a soft dock - velocities and accelerations decay to zero as the chase vehicle the target - and there is no thruster plume to impart momentum or contaminate the target.

AFIT Designator


DTIC Accession Number



The author's Vita page is omitted.