Date of Award


Document Type


Degree Name

Doctor of Philosophy (PhD)


Department of Electrical and Computer Engineering

First Advisor

Julie A. Jackson, PhD


Compressed sensing (CS) is a recent mathematical technique that leverages the sparsity in certain sets of data to solve an underdetermined system and recover a full set of data from a sub-Nyquist set of measurements of the data. Given the size and sparsity of the data, radar has been a natural choice to apply compressed sensing to, typically in the fast-time and slow-time domains. Polarimetric synthetic aperture radar (PolSAR) generates a particularly large amount of data for a given scene; however, the data tends to be sparse. Recently a technique was developed to recover a dropped PolSAR channel by leveraging antenna crosstalk information and using compressed sensing. In this dissertation, we build upon the initial concept of the dropped-channel PolSAR CS in three ways. First, we determine a metric which relates the measurement matrix to the l2 recovery error. The new metric is necessary given the deterministic nature of the measurement matrix. We then determine a range of antenna crosstalk required to recover a dropped PolSAR channel. Second, we propose a new antenna design that incorporates the relatively high levels of crosstalk required by a dropped-channel PolSAR system. Finally, we integrate fast- and slow-time compression schemes into the dropped-channel model in order to leverage sparsity in additional PolSAR domains and overall increase the compression ratio. The completion of these research tasks has allowed a more accurate description of a PolSAR system that compresses in fast-time, slow-time, and polarization; termed herein as highly compressed PolSAR. The description of a highly compressed PolSAR system is a big step towards the development of prototype hardware in the future.

AFIT Designator


DTIC Accession Number