Date of Award

9-15-2016

Document Type

Dissertation

Degree Name

Doctor of Philosophy (PhD)

Department

Department of Aeronautics and Astronautics

First Advisor

Richard G. Cobb, PhD.

Abstract

As researchers strive to achieve autonomy in systems, many believe the goal is not that machines should attain full autonomy, but rather to obtain the right level of autonomy for an appropriate man-machine interaction. A common phrase for this interaction is manned-unmanned teaming (MUM-T), a subset of which, for unmanned aerial vehicles, is the concept of the loyal wingman. This work demonstrates the use of optimal control and stochastic estimation techniques as an autonomous near real-time dynamic route planner for the DoD concept of the loyal wingman. First, the optimal control problem is formulated for a static threat environment and a hybrid numerical method is demonstrated. The optimal control problem is transcribed to a nonlinear program using direct orthogonal collocation, and a heuristic particle swarm optimization algorithm is used to supply an initial guess to the gradient-based nonlinear programming solver. Next, a dynamic and measurement update model and Kalman filter estimating tool is used to solve the loyal wingman optimal control problem in the presence of moving, stochastic threats. Finally, an algorithm is written to determine if and when the loyal wingman should dynamically re-plan the trajectory based on a critical distance metric which uses speed and stochastics of the moving threat as well as relative distance and angle of approach of the loyal wingman to the threat. These techniques are demonstrated through simulation for computing the global outer-loop optimal path for a minimum time rendezvous with a manned lead while avoiding static as well as moving, non-deterministic threats, then updating the global outer-loop optimal path based on changes in the threat mission environment. Results demonstrate a methodology for rapidly computing an optimal solution to the loyal wingman optimal control problem.

AFIT Designator

AFIT-ENY-DS-16-S-063

DTIC Accession Number

Pending

Share

COinS