Date of Award


Document Type


Degree Name

Master of Science


Department of Electrical and Computer Engineering

First Advisor

Kenneth M. Hopkinson, PhD.


This thesis promotes the use of the network tasking order (NTO), in collaboration with the air tasking order (ATO), to optimize routing in Mobile Ad hoc Networks (MANET). The network topology created by airborne platforms is determined ahead of time and network transitions are calculated offline prior to mission execution. This information is used to run maximum multi-commodity flow algorithms offline to optimize network flow and schedule route changes for each network node. These calculations and timely route modifications increases network efficiency. This increased performance is critical to command and control decision making in the battlefield. One test scenario demonstrates near a 100% success rate when route scheduling and splitting network traffic over an emulated MANET compared to Open Shortest Path First (OSPF) which only achieved around a 71% success rate, and Mesh Made Easy (MME) which achieved about 50% success. Another test scenario demonstrates that the NTO can experience degradation due to schedule delay. Overall, if executed and planned properly, the NTO can significantly improve network Quality of Service (QoS).

AFIT Designator


DTIC Accession Number