David Chow

Date of Award


Document Type


Degree Name

Master of Science


Department of Operational Sciences

First Advisor

Sharif H. Melouk, PhD


Given the drawbacks of leaving time-sensitive targeting (TST) strictly to humans, there is value to the investigation of alternative approaches to TST operations that employ autonomous systems. This paper accomplishes five things. First, it proposes a short-hop abbreviated routing paradigm (SHARP) - based on Delaunay triangulations (DT), ad-hoc communication, and autonomous control - for recognizing and engaging TSTs that, in theory, will improve upon persistence, the volume of influence, autonomy, range, and situational awareness. Second, it analyzes the minimum timeframe need by a strike (weapons enabled) aircraft to navigate to the location of a TST under SHARP. Third, it shows the distribution of the transmission radius required to communicate between an arbitrary sender and receiver. Fourth, it analyzes the extent to which connectivity, among nodes with constant communication range, decreases as the number of nodes decreases. Fifth, it shows the how SHARP reduces the amount of energy required to communicate between two nodes. Mathematica is used to generate data for all metrics. JMP is used to analyze the statistical nature of Mathematica's output.

AFIT Designator


DTIC Accession Number