Date of Award


Document Type


Degree Name

Master of Science in Electrical Engineering


Department of Electrical and Computer Engineering

First Advisor

Meir Pachter, PhD


The Two-on-One pursuit-evasion differential game is revisited where the holonomic players have equal speed, and the two pursuers are endowed with a circular capture range ℓ > 0. Then, the case where the pursuers' capture ranges are unequal, ℓ1 > ℓ2 ≥ 0, is analyzed. In both cases, the state space region where capture is guaranteed is delineated and the optimal feedback strategies are synthesized. Next, pure pursuit is considered whereupon the terminal separation between a pursuer and an equal-speed evader less than the pursuer's capture range ℓ > 0. The case with two pursuers employing pure pursuit is considered, and the conditions for capturability are presented. The pure pursuit strategy is applied to a target-defense scenario and conditions are given that determine if capture of the attacker before he reaches the target is possible. Lastly, three-on-one pursuit-evasion is considered where the three pursuers are initially positioned in a fully symmetric configuration. The evader, situated at the circumcenter of the three pursuers, is slower than the pursuers. We analyze collision course and pure pursuit guidance and provide evidence that conventional strategy for “optimal” evasive maneuver is incorrect.

AFIT Designator


DTIC Accession Number