Date of Award


Document Type


Degree Name

Master of Science in Electrical Engineering


Department of Electrical and Computer Engineering

First Advisor

Samuel Stone, PhD.


The research presented here provides a comparison of classification, verification, and computational time for three techniques used to analyze Unintentional Radio- Frequency (RF) Emissions (URE) from semiconductor devices for the purposes of device discrimination and operation identification. URE from ten MSP430F5529 16-bit microcontrollers were analyzed using: 1) RF Distinct Native Attribute (RFDNA) fingerprints paired with Multiple Discriminant Analysis/Maximum Likelihood (MDA/ML) classification, 2) RF-DNA fingerprints paired with Generalized Relevance Learning Vector Quantized-Improved (GRLVQI) classification, and 3) Time Domain (TD) signals paired with matched filtering. These techniques were considered for potential applications to detect counterfeit/Trojan hardware infiltrating supply chains and to defend against cyber attacks by monitoring executed operations of embedded systems in critical Supervisory Control And Data Acquisition (SCADA) networks.

AFIT Designator


DTIC Accession Number