Date of Award


Document Type


Degree Name

Master of Science


Department of Electrical and Computer Engineering

First Advisor

Scott R. Graham, PhD


Military communications has always been an important factor in military victory and will surely play an important part in future combat. In modern warfare, military units are usually deployed without existing network infrastructure. The IP routing protocol, designed for hierarchical networks cannot easily be applied in military networks due to the dynamic topology expected in military environments. Mobile ad-hoc networks (MANETs) represent an appropriate network for small military networks. But, most ad-hoc routing protocols suffer from the problem of scalability for large networks. Hierarchical routing schemes based on the IP address structure are more scalable than ad-hoc routing but are not flexible for a network with very dynamic topology. This research seeks a compromise between the two; a hybrid routing structure which combines mobile ad-hoc network routing with hierarchical network routing using pre-planned knowledge about where the various military units will be located and probable connections available. This research evaluates the performance of the hybrid routing and compares that routing with a flat ad-hoc routing protocol, namely the Ad-hoc On-demand Distance Vector (AODV) routing protocol with respect to goodput ratio, packet end to- end delay, and routing packet overhead. It shows that hybrid routing generates lower routing control overhead, better goodput ratio, and lower end-to-end packet delay than AODV routing protocol in situations where some a-priori knowledge is available.

AFIT Designator


DTIC Accession Number