Date of Award


Document Type


Degree Name

Master of Science in Electrical Engineering


Department of Electrical and Computer Engineering

First Advisor

Yong C. Kim, PhD


This work presents a built, tested, and demonstrated test structure that is low-cost, flexible, and re-usable for robust radiation experimentation, primarily to investigate memory, in this case SRAMs and SRAM-based FPGAs. The space environment can induce many kinds of failures due to radiation effects. These failures result in a loss of money, time, intelligence, and information. In order to evaluate technologies for potential failures, a detailed test methodology and associated structure are required. In this solution, an FPGA board was used as the controller platform, with multiple VHDL circuit controllers, data collection and reporting modules. The structure was demonstrated by programming an SRAM-based FPGA board as the device under test (DUT) with various types of adders, counters and RAM modules. The controllers, hardware, and data collection operations were tested and validated using gamma radiation from a Co-60 source at the Ohio State University Nuclear Reactor to irradiate the DUT. The test structure is easily modified to allow for a broad range of experiments on the same DUT. In addition, this structure is easily adaptable for other memory types, such as DRAM, FlashRam, and MRAM. These additions will be discussed further in this document. The system fits in a backpack and costs less than $1000.

AFIT Designator


DTIC Accession Number