Date of Award


Document Type


Degree Name

Master of Science in Electrical Engineering


Department of Electrical and Computer Engineering

First Advisor

Julie A. Jackson, PhD


This thesis develops a framework for SAR target detection and super-resolution in low-resolution environments. The primary focus in this research is the background clutter heterogeneity that often accompanies low range and cross-range resolutions. A corrective model which accounts for clutter replacement is developed to define the detection and false alarm rates of the detector more accurately than a traditional model in which the radar return from the target supplements the existing clutter. In a heterogeneous clutter cell, the clutter replacement model leverages the different scattering distributions among the individual clutter types to generate a probability distribution function for the areas of each clutter type which are obstructed by a target. The location of the target can be extrapolated from the clutter replacement areas, and a multiple hypothesis detection test is conducted to determine which location estimate yields the lowest average error.

AFIT Designator


DTIC Accession Number