Aaron Evers

Date of Award


Document Type


Degree Name

Doctor of Philosophy (PhD)


Department of Electrical and Computer Engineering

First Advisor

Julie A. Jackson, PhD


The phase gradient autofocus (PGA) algorithm has seen widespread use and success within the synthetic aperture radar (SAR) imaging community. However, its use and success has largely been limited to collection geometries where either the polar format algorithm (PFA) or range migration algorithm is suitable for SAR image formation. In this work, a generalized phase gradient autofocus (GPGA) algorithm is developed which is applicable with both the PFA and backprojection algorithm (BPA), thereby directly supporting a wide range of collection geometries and SAR imaging modalities. The GPGA algorithm preserves the four crucial signal processing steps comprising the PGA algorithm, while alleviating the constraint of using a single scatterer per range cut for phase error estimation which exists with the PGA algorithm. Moreover, the GPGA algorithm, whether using the PFA or BPA, yields an approximate maxi- mum marginal likelihood estimate (MMLE) of phase errors having marginalized over unknown complex-valued reflectivities of selected scatterers. Also, in this work a new approximate MMLE, termed the max-semidefinite relaxation (Max-SDR) phase estimator, is proposed for use with the GPGA algorithm. The Max-SDR phase estimator provides a phase error estimate with a worst-case approximation bound compared to the solution set of MMLEs (i.e., solution set to the non-deterministic polynomial- time hard (NP-hard) GPGA phase estimation problem). Moreover, in this work a specialized interior-point method is presented for more efficiently performing Max- SDR phase estimation by exploiting low-rank structure typically associated with the GPGA phase estimation problem. Lastly, simulation and experimental results produced by applying the GPGA algorithm with the PFA and BPA are presented.

AFIT Designator


DTIC Accession Number