Date of Award

3-10-2010

Document Type

Thesis

Degree Name

Master of Science in Industrial Hygiene

Department

Department of Systems Engineering and Management

First Advisor

Jeremy M. Slagley, PhD

Abstract

Within the United States Air Force (USAF) Advanced Composite Material (ACM) is gaining an increasing use in military aircraft. With the number of aircraft that have increasingly large amounts of ACM materials, the probability of an incident with one of these aircraft also increases. When such an incident occurs the aircraft needs to be disassembled, removed, and later inspected as part of the accident investigation process. This disassembly process is termed “Crash Recovery Operations.” Carbon fibers have been shown to be hazardous to human health and a pilot study raised the suspicion that nanosized aerosol may be generated during the cutting of carbon fiber panels. Due to this, a bench top study was conducted to evaluate the effectiveness of several fiber controls. Additionally, an evaluation of a number of direct reading instruments and traditional gravimetric sampling techniques were evaluated to determine a sampling protocol for evaluation composite fibers. A statistically significant (F-value = < 0.0001) shift towards larger diameters in the idealized particle size distribution was shown for both wetted water and water controls when compared to a baseline of no control when cutting burnt ACM. Recommendations for future evaluation and control of composite fiber processes were made.

AFIT Designator

AFIT-GIH-ENV-10-M01

DTIC Accession Number

ADA518994

Included in

Toxicology Commons

Share

COinS