Date of Award

12-1-2018

Document Type

Dissertation

Degree Name

Doctor of Philosophy (PhD)

Department

Department of Operational Sciences

First Advisor

Darryl K. Ahner, PhD

Abstract

The problem of targeting and engaging individual missiles (targets) with an arsenal of interceptors (weapons) is known as the weapon target assignment problem. This problem has been well-researched since the seminal work in 1958. There are two distinct categories of the weapon target assignment problem: static and dynamic. The static weapon target assignment problem considers a single instance in which a known number of incoming missiles is to be engaged with a finite number of interceptors. By contrast, the dynamic weapon target assignment problem considers either follow on engagement(s) should the first engagement(s) fail, a subsequent salvo of incoming missiles, or both. This research seeks to define and solve a realistic dynamic model. First, assignment heuristics and metaheuristics are developed to provide rapid near-optimal solutions to the static weapon target assignment. Next, a technique capable of determining how many of each interceptor type to reserve for a second salvo by means of approximate dynamic programming is developed. Lastly, a model that realistically considers erratic flight paths of incoming missiles and determines assignments and firing sequences of interceptors within a simulation to minimize the number of hits to a protected asset is developed. Additionally, the first contemporary survey of the weapon target assignment problem since 1985 is presented. Collectively, this work extends the research of missile defense into practical application more so than currently is found within the literature.

AFIT Designator

AFIT-ENS-DS-18-D-016

DTIC Accession Number

AD1067720

Share

COinS