Date of Award


Document Type


Degree Name

Master of Science in Electrical Engineering


Department of Electrical and Computer Engineering

First Advisor

Scott R. Graham, PhD.


Securing data in transit is critically important to the Department of Defense in todays contested environments. While encryption is often the preferred method to provide security, there exist applications for which encryption is too resource intensive, not cost-effective or simply not available. In this thesis, a two-channel communication system is proposed in which the message being sent can be intelligently and dynamically split over two or more channels to provide a measure of data security either when encryption is not available, or perhaps in addition to encryption. This data spiting technique employs multiple wireless channels operating at the physical layer, allowing traditional layers above to run seamlessly over it. Eight data splitting policies are developed with preliminary evaluation of their effectiveness in combating three common cyber security threat scenarios to include eavesdropping, jamming and man-in-the-middle attacks. These policies are then implemented in a simple proof-of-concept communication system simulation. Moreover, a framework is proposed for measuring and classifying the level of integrity, confidentiality and availability that is provided by each policy. While additional discussions present and evaluate potential packet structure, more possibilities for dynamic tunability of the developed policies and any potential vulnerabilities introduced by these data splitting schemes. Lastly, a simulation test-bed is constructed to allow for implementation and testing of future policies. These data splitting techniques could provide additional options to increase data-in-transit security for unencrypted systems operating in contested environments.

AFIT Designator


DTIC Accession Number