Date of Award


Document Type


Degree Name

Master of Science


Department of Electrical and Computer Engineering

First Advisor

Todd R. Andel, PhD.


The transfer of information has always been an integral part of military and civilian operations, and remains so today. Because not all information we share is public, it is important to secure our data from unwanted parties. Message encryption serves to prevent all but the sender and recipient from viewing any encrypted information as long as the key stays hidden. The Advanced Encryption Standard (AES) is the current industry and military standard for symmetric-key encryption. While AES remains computationally infeasible to break the encrypted message stream, it is susceptible to side-channel attacks if an adversary has access to the appropriate hardware. The most common and effective side-channel attack on AES is Differential Power Analysis (DPA). Thus, countermeasures to DPA are crucial to data security. This research attempts to evaluate and combine two hiding DPA countermeasures in an attempt to further hinder side-channel analysis of AES encryption. Analysis of DPA attack success before and after the countermeasures is used to determine effectiveness of the protection techniques. The results are measured by evaluating the number of traces required to attack the circuit and by measuring the signal-to-noise ratios.

AFIT Designator


DTIC Accession Number