Date of Award


Document Type


Degree Name

Master of Science in Systems Engineering


Department of Systems Engineering and Management

First Advisor

John M. Colombi, PhD.


The employment of Small Unmanned Aerial Systems (SUAS) for reconnaissance and surveillance missions is a vital capability of the United States military. Cooperative control algorithms for SUAS can enable tactical multi-vehicle configurations for communications extension, intelligent navigation, and a multitude of other applications. Past research at AFIT has designed and simulated a cooperative rover-relay algorithm for extended communications and has investigated its implementation through various modem configurations. This research explores aerial networking options for implementing cooperative control and applies them to an actual SUAS. Using Commercial Off-The-Shelf (COTS) hardware, a system was designed and flight tested to implement the rover-relay algorithm and provide a testbed system for future research in cooperative control. Two different modem configurations were designed and tested. The first modem configuration was demonstrated through a series of ground and flight tests to successfully relay autopilot commands and telemetry between a ground station and a rover aircraft through a relay aircraft. This configuration effectively doubles the effective range of the rover system to 1.2 miles, together with an algorithm that autonomously navigates the relay aircraft to an optimal location. Secondly, a mesh network was configured and tested. This configuration successfully relayed aircraft telemetry to the ground station from each vehicle in the network. However, the network suffered from low throughput, which limited autopilot functionality, such as updating navigation waypoints to each aircraft. The results suggest the system be updated with more capable modems in a mesh configuration to broaden the possibilities for future research in cooperative applications.

AFIT Designator


DTIC Accession Number