
Air Force Institute of Technology Air Force Institute of Technology

AFIT Scholar AFIT Scholar

Theses and Dissertations Student Graduate Works

9-2023

Test Problem Generation and Metaheuristic Selection for the Test Problem Generation and Metaheuristic Selection for the

Multidemand Multidimensional Knapsack Problem Multidemand Multidimensional Knapsack Problem

Matthew E. Scherer

Follow this and additional works at: https://scholar.afit.edu/etd

 Part of the Operational Research Commons

Recommended Citation Recommended Citation
Scherer, Matthew E., "Test Problem Generation and Metaheuristic Selection for the Multidemand
Multidimensional Knapsack Problem" (2023). Theses and Dissertations. 7669.
https://scholar.afit.edu/etd/7669

This Dissertation is brought to you for free and open access by the Student Graduate Works at AFIT Scholar. It has
been accepted for inclusion in Theses and Dissertations by an authorized administrator of AFIT Scholar. For more
information, please contact AFIT.ENWL.Repository@us.af.mil.

https://scholar.afit.edu/
https://scholar.afit.edu/etd
https://scholar.afit.edu/graduate_works
https://scholar.afit.edu/etd?utm_source=scholar.afit.edu%2Fetd%2F7669&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/308?utm_source=scholar.afit.edu%2Fetd%2F7669&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.afit.edu/etd/7669?utm_source=scholar.afit.edu%2Fetd%2F7669&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:AFIT.ENWL.Repository@us.af.mil

Test Problem Generation and Metaheuristic
Selection for the Multidemand Multidimensional

Knapsack Problem

DISSERTATION

Matthew E. Scherer, Capt, USAF
AFIT-ENS-DS-23-S-020

DEPARTMENT OF THE AIR FORCE
AIR UNIVERSITY

AIR FORCE INSTITUTE OF TECHNOLOGY

Wright-Patterson Air Force Base, Ohio

DISTRIBUTION STATEMENT A
Approved for public release: distribution unlimited.

The views expressed in this document are those of the author and do not reflect the
official policy or position of the United States Air Force, the United States Department
of Defense or the United States Government. This material is declared a work of the
U.S. Government and is not subject to copyright protection in the United States.

AFIT-ENS-DS-23-S-020

TEST PROBLEM GENERATION AND METAHEURISTIC SELECTION FOR

THE MULTIDEMAND MULTIDIMENSIONAL KNAPSACK PROBLEM

DISSERTATION

Presented to the Faculty

Graduate School of Engineering and Management

Air Force Institute of Technology

Air University

Air Education and Training Command

in Partial Fulfillment of the Requirements for the

Degree of Doctor of Philosophy

Matthew E. Scherer, BS , MS

Capt, USAF

September, 2023

DISTRIBUTION STATEMENT A
Approved for public release: distribution unlimited.

AFIT-ENS-DS-23-S-020

TEST PROBLEM GENERATION AND METAHEURISTIC SELECTION FOR

THE MULTIDEMAND MULTIDIMENSIONAL KNAPSACK PROBLEM

DISSERTATION

Matthew E. Scherer, BS , MS
Capt, USAF

Committee Membership:

Dr. Raymond R. Hill
Chair

Dr. Brian J. Lunday
Member

Dr. Bruce A. Cox
Member

Dr. Edward D. White
Member

Adedeji B. Badiru, PhD
Dean, Graduate School of Engineering and Management

AFIT-ENS-DS-21-S-XXX

Abstract

This work focuses on instance generation methods for the multi-demand multidi-

mensional knapsack problem (MDMKP). Specifically, instance space analysis (ISA)

is used to characterize the landscape of existing instances and validate the novelty of

new instances generated with a novel problem generation method, the primal problem

instance generator (PPIG). The instance generator is capable of producing feasible,

diverse, and challenging instances by directly controlling the problem features. PPIG

contributes to the previous collections of instances and is validated through instance

space analysis. The research presents an in-depth empirical evaluation of existing

solution procedures for the MDMKP. The portfolio of metaheuristics examined show

promising performance on existing benchmark libraries but lack robustness when the

test set of instances are extended using the PPIG method. A machine learning clas-

sifier is employed to provide an interpretable link between instance configuration and

solution procedure performance. The final aspect of the research is an optimization

framework used to provide problem generation parameters to the PPIG methodology

to further cover the instance space for the full suite of MDMKP test problems.

iv

To my wife Lauren and family.

v

Acknowledgements

Without the mentorship of Dr. Raymond Hill, this work would not have been

possible. Thank you for guiding me when I needed to walk and letting me run when

I had it in me. A dissertation is a massive undertaking and it would not have been

possible without you. I am a better analyst, researcher, and person thanks to you.

I would also like to thank my committee members, Dr. Brian Lunday, Dr. Bruce

Cox, and Dr. Tony White, for their support and feedback. Some of you instructed

me on topics I am building upon in this work and could not have done without

strong foundations. As educators, you are a shining example of an instructor who

continuously strives to be better each year for the sake of their students. Having

this experience as a student under you in a classroom but also as an advisor in the

research process is something I will carry with me in my career.

Lastly, I would like to thank my friends gained from my PhD cohort. Graduate

school would have been a lot more lonely without my peers suffering along the way

with me. I would like to think we learned a lot from each other but I can say that I

learned a lot about my future as an officer in the Air Force thanks to you.

Matthew E. Scherer

vi

Table of Contents

Page

Abstract . iv

Dedication . v

Acknowledgements . vi

List of Figures . ix

List of Tables . xii

I. Introduction . 1

1.1 Motivation . 3
1.1.1 Complexity . 3
1.1.2 Instance Generation . 7

1.2 Research Objectives and Scope . 8
1.3 Organization of the Dissertation . 9

II. Analyzing Problem Instances of the Multidemand
Multidimensional Knapsack Problem with Instance Space
Analysis . 11

2.1 Introduction . 11
2.2 Instance Space Analysis . 17

2.2.1 Problem Space . 18
2.2.2 Subspace of Instances . 20
2.2.3 Algorithm Space . 22
2.2.4 Performance Space . 23
2.2.5 Feature Space . 24

2.3 The Instance Space . 28
2.3.1 Augmenting the Instance Space . 32

2.4 Feasibility Considerations on Robust Problem
Construction . 37
2.4.1 Feasible Instance Generation . 38
2.4.2 Analysis of Feasible Instances . 41

2.5 Conclusion . 45

III. Instance Based Configuration for Metaheuristic Selection 48

3.1 Introduction . 48
3.2 Instance Space Analysis . 52

3.2.1 Algorithm Selection Problem . 52
3.2.2 Problem Space . 53

vii

Page

3.2.3 Subset of Instances . 54
3.2.4 Algorithm Space . 58
3.2.5 Performance Space . 62
3.2.6 Feature Space . 62
3.2.7 Instance Space . 65

3.3 Metaheuristic Selection Problem . 70
3.4 Results . 75
3.5 Conclusion . 79

IV. An Optimization Framework for Filling the Instance Space
of Multidemand Multidimensional Knapsack Problems 81

4.1 Introduction . 81
4.1.1 Literature Review . 84

4.2 Problem Description . 88
4.3 Methodology. 94
4.4 Results . 98
4.5 Discussion . 101

4.5.1 Updating the Instance Space . 103
4.6 Conclusion . 108

V. Conclusion . 110

5.1 Summary . 111
5.2 Future Work . 112

Appendix A. Distribution of Features Across Instance Spaces 114

Bibliography . 119

viii

List of Figures

Figure Page

1 Summary of Algorithm Selection Problem (Rice, 1976)
shown in dotted box, extended upon by Smith-Miles
et al. (2014) . 17

2 Instance space for the MDMKP based on the instances
from Beasley (1990), with projection defined by (6) 31

3 Correlation between cj and wij for i = 1, . . . ,m . 33

4 Correlation between cj and wij for i = m+ 1, . . . ,m+ q 33

5 Instance space for the MDMKP based on the instances
from Beasley (1990), augmented with instances
generated from Cho (2005) . 34

6 Instance space for the MDMKP based on Beasley and
Cho instances . 35

7 ISA of new instances on the Beasley and Cho instance
space . 42

8 ISA of Scherer, Beasley, and Cho instance space with
theoretical feasible boundary . 43

9 Summary of Algorithm Selection Problem (Rice, 1976)
shown in dotted box, extended upon by Smith-Miles
et al. (2014) . 53

10 Distribution of correlation coefficients for knapsack
constraints . 64

11 Distribution of correlation coefficients for demand
constraints . 65

12 Instance space for the MDMKP with projection defined
by (13) . 68

13 Distribution of meta-features across instance space 69

14 SVM predicted best metaheuristic for the MDMKP 71

15 Local Search’s footprints across the instance space 72

ix

Figure Page

16 Adaptive Memory Search’s footprints across the
instance space . 72

17 Scatter Search’s footprints across the instance space 73

18 Two-Stage Tabu Search’s footprints across the instance
space . 73

19 Optimal sparse decision tree for MDMKP ASP . 76

20 GOSDT predicted best metaheuristic for the MDMKP. 77

21 Confusion matrix for GOSDT . 78

22 Confusion matrix for SVM . 78

23 Summary of ASP (Rice, 1976) shown in dotted box,
extended upon by Smith-Miles et al. (2014) . 89

24 Instance space from Scherer et al. (2023a) . 93

25 Reduced instance space . 98

26 MDMKP instance realizations from PPIG in the
reduced instance space . 100

27 Footprints of metaheuristics in the reduced instance
space . 101

28 LS footprints across the instance space . 103

29 AMS footprints across the instance space . 104

30 SS footprints across the instance space . 104

31 TSTS footprints across the instance space . 105

32 Updated instance space . 106

33 Optimal sparse decision tree for MDMKP ASP . 108

34 Distribution of features across Beasley instance space 115

35 Distribution of features across Cho and Beasley instance
space . 116

x

Figure Page

36 Distribution of features across Scherer, Cho, and
Beasley instance space . 118

xi

List of Tables

Table Page

1 Meta-features for the MDMKP . 27

2 Average runtimes (seconds) to identify a within 1%
near-optimal solution by objective function type. 32

3 Average runtimes (seconds) to identify a within 1%
near-optimal solution by instance source. 44

4 Meta-features for the MDMKP . 66

5 Euclidean distance to target for realized instances 100

6 Number of instances with best found solution by
metaheuristic . 102

xii

TEST PROBLEM GENERATION AND METAHEURISTIC SELECTION FOR

THE MULTIDEMAND MULTIDIMENSIONAL KNAPSACK PROBLEM

I. Introduction

This dissertation investigates several aspects in the empirical testing of solution

procedures in combinatorial optimization (CO). These investigates resulted in im-

proved problem generation approaches, improved algorithm performance insights and

improved visualization of the solution space for a particular type of CO. CO originates

from linear programming (LP). LP is a mathematical means for translating a real-

world decision making problem into a mathematical framework (a math program)

with a desired linear objective function and set of linear constraints. The decisions

are in the form of decision variables which align with the decision making construct

used by the decision maker. Decision variables can be continuous and/or discrete

depending on the scenario being modeled. The formulated model is solved to find an

optimal solution. If a heuristic, typically used in settings where the problem is too

computationally intensive to find an optimal solution, is implemented then the corre-

sponding solution is not guaranteed to be optimal but a reasonably strong solution is

found much quicker. Both solution methods are often evaluated by the time required

to obtain their solution and the quality of the solution given.

Integer programming (IP) is based on LP but includes a restriction to a discrete

domain in their decision variables. Mixed integer (linear) programming (MIP) in-

cludes a combination of continuous and discrete variable domains. Examples of LP

formulations include network flow problems such as the maximum flow problem. The

maximum flow problem consists of maximizing the flow over a defined graph with

1

nodes and edges between nodes subject to capacities constraints on associated edges.

MIP formulations are seen in facility location problems with a binary fixed cost of

building a facility and then an added variable cost for transporting resources from

the facility to a customer.

CO refers to problems which contain an optimal solution as some subset of a finite

set of feasible solutions to the mathematical program. Therefore, an optimal solution

is always obtainable through complete enumeration of all possible solutions, but this

is almost always impractical due to the combinatorial number of solutions to find and

evaluate. Examples of CO problems include the knapsack problem (KP), which is

concerned with filling a knapsack with a fixed capacity with a finite number of items

to maximize profit, each item containing a profit coefficient and cost coefficient. A

variant of the KP, and the problem of interest in this research, is the multidemand

multidimensional knapsack problem (MDMKP). The MDMKP is concerned with fill-

ing a knapsack with items with an associated cost/profit such that demands are met

across multiple dimensions without violating the supply capacities across multiple

dimensions.

Research in CO is usually performed using either a top-down or bottom-up fashion.

In the top-down fashion, research is focused on developing solution methods for the

most difficult optimization problems such as the traveling salesman problem (TSP).

The idea is to assume a solution method for the complex optimization problems

will carry over to a larger variety of simpler problems. In contrast, the bottom-up

approach focuses on developing methods for the simplest models such as the KP,

hoping the techniques generalize to the more complex models. Research focused on

the MDMKP strikes a middle-ground approach to these perspectives, serving the KP

community through its simplicity but also containing enough complexity to pertain

to more complex problem classes.

2

To test the effectiveness of a solution method for an optimization problem, a

collection of test instances are used to evaluate solution procedure performance. The

evaluated instances are usually obtained from a synthetic data generation method

or existing test libraries. The collections are dependent on the problem of interest,

since the set of parameters obtained are assigned to the relevant decision variables

and constraints in a formulation. From these given methods, algorithm or heuristic

performance and solution quality is measurable across a set of different structured

problems.

1.1 Motivation

1.1.1 Complexity

Combinatorial optimization problems are difficult because, in principle, these

problems can be solved by enumeration. However when considering the number of

feasible solutions, the enumeration is impractical. For example, in the assignment

problem there is an additional permutation of assignments for each node n added,

therefore there are n! feasible solutions. In set cover problems the number of sub-

sets for consideration is 2n. In the TSP, the salesperson initially has n − 1 cities for

consideration at city n = 1, then n − 2 cities afterwards, and the pattern continues

resulting in (n − 1)! feasible tours. All of these examples indicate the difficulty in

complete enumeration as a solution procedure.

The difficulty of a problem is determined by the performance of the best known

algorithm. Performance is generally defined by the running time and the amount of

computer memory in the context of an exact algorithm, although solution quality is

also a common measure. A heuristic is measured by its solution quality relative to the

computational resources required. To have some distinguishing measure of algorithm

performance, there are several methods of investigation. The first is to examine a

3

standardized set of problem instances and measure the performance across different

instances. Another approach is to examine the average running time of a solution

procedure. In both circumstances a problem arises of confounding factors from the

computer specifications or the solution procedure. The most common measure of

algorithm performance is to examine the theoretical worst-case analysis of an algo-

rithm. The analysis gives an upper bound on the number of arithmetic operations

required to solve any instance of a given size.

The most efficient algorithms are bounded by a polynomial function of comput-

ing time and are called polynomial time algorithms. These algorithms are denoted

through “big O” notation which denotes the worst-case complexity of an algorithm

(Garey and Johnson, 1979). These algorithms scale according a polynomial of the

size of the input n such as O(n), O(nlogn), O(nk) for some constant k. The least

efficient algorithms are non-polynomial algorithms because they cannot be bounded

by a polynomial function of computing time. Instead these algorithms are bound by

an exponential function in n such as O(2n) or O(3n). Pseudopolynomial algorithms

are bounded asymptotically by a polynomial both in n and at least one other input

value. For example the capacity of the knapsack c impacts the algorithm perfor-

mance of dynamic programming in solving the KP O(nc) (Kellerer et al., 2004b).

Pseudopolynomial algorithms, such as dynamic programming, are less “attractive”

than polynomial time algorithms because of limited computer memory.

The distinction of problems based on their worst case algorithm performance

defines the computational complexity of a problem. In computational complexity

theory the seminal work of Karp (1972) defined 21 NP-complete problems. NP-

complete problems share two characteristics: A solution to an NP-complete problem

can be verified in polynomial time and if a polynomial time algorithm exists for any of

the NP-complete problems then all NP-complete problems are solvable in polynomial

4

time. A number of CO problems fall into the class of NP-complete problems after

being reduced to a decision problem. However, the implementation of a solution

procedure and its runtime determines how “easy” a problem is compared to a difficult

problem. A problem such as the KP is an NP-complete problem but is regarded as

tractable while the TSP is a intractable problem (Garey and Johnson, 1978). The

discussion tends towards the known algorithms to obtain an optimal solution and the

efficiency of each algorithm.

The simplest case of CO problems are problems outside of NP-complete and are

solvable in polynomial time. For example network flow problems, such as the mini-

mum cost network flow (MCNF) problem without integral flow constraints, are solv-

able within polynomial time. If the MCNF problem requires integral flow, then the

problem is NP-complete (Even et al., 1975). An advantage to solving the MCNF

problem is its structure. If the MCNF problem contains integral data in its for-

mulation such as the objective function coefficients, constraint coefficients, and the

capacities, the total unimodularity property grants an integral basic feasible solution.

In addition, the MCNF problem is solvable through the efficient polynomial time

network simplex algorithm (Orlin, 1997). In this instance the structure of the given

problem results in handling the complicated integrality portion of the formulation as

typically seen in network flow problems.

The MCNF problem is a generalization of the assignment, transport, transship-

ment, maximal flow, and shortest path problems (Ahuja et al., 1988). Therefore

all of these problems are “easy” to solve in practice because there is a polynomial

time algorithm for these optimization problems. In some circumstances, the structure

within the problem naturally produces integer solutions and also makes combinato-

rial optimization problems easy to solve. Other problems which are solvable through

polynomial time include LP problems. Karmarkar (1984) is the first instance of a

5

polynomial time algorithm which is also efficient in practice. The addition of a in-

teger constraint to an LP forms a much more difficult problem in an NP-complete

problem.

Within NP-complete problems there is no discrimination of problem difficulty by

the definition of NP-completeness. The second requirement of an NP-complete prob-

lem is if a polynomial time algorithm exists to solve one of the NP-complete problems

then the algorithm exists for all NP-complete problems. However there are special

cases of NP-completeness which do separate some problems such as the TSP and

the 0-1 knapsack problem in the form of strong and weak NP-completeness. These

are directly related to the relationship of algorithms which require non-deterministic

polynomial time for an optimal solution compared to pseudopolynomial time algo-

rithms.

Strong NP-completeness refers to the set of problems which remain NP-complete

even when bounded by a polynomial in the length of the input parameters (Garey

and Johnson, 1978). Weak NP-completeness is the complement which indicates the

problem no longer remains NP-complete when bounded by a polynomial in the length

of the input parameters. For example in network optimization the upper bounds of

the arc/edge costs C and capacity U may be bounded by a polynomial (the similarity

assumption), i.e., for some integer k, C = O(nk) and U = O(nk). Then the network is

strong NP-complete if it remains NP-complete even when the similarity assumption

is satisfied (Ahuja et al., 1988). Examples of strong NP-complete problems include

the TSP and the integer flow MCNF problem. A weak NP-complete problem is the

0-1 KP with integer coefficients. The 0-1 KP is solvable in pseduopolynomial time

through dynamic programming (O(nc)) but in practice the capacity constraint c is

usually large and the problem remains difficult to solve.

6

1.1.2 Instance Generation

To construct a mathematical program, sets of parameters have to be defined for the

associated coefficients for the decision variables and constraints. Different methods

for defining parameters in a model include real-world data, benchmark libraries, and

synthetic constructions. The complex relationships between parameters designates

the objective performance of a solution procedure in empirical testing. Other param-

eters, such as the size of the problem instance, directly relate to the performance of

a solution procedure.

Real-world data is usually unobtainable for most problem classes or lacks a defin-

ing number of observations to characterize all potential problem instances. Addition-

ally, real-world data is a less obtainable comparison to subsequent work in a problem

class. Benchmark libraries are an attempt to provide standardized results for solution

procedure performance which are easily obtainable. However they may not cover the

full range of potential problem instances observable in a given problem class, result-

ing in poor conclusions on a solution procedure performance. Instead the solution

procedure is biased towards a benchmark set of data.

In synthetic problem generation, a reoccurring goal is to generate a typical class of

problems because real world data is sparse or not diverse enough to test robustness of

a solution procedure. The recommendations set forth by Hall and Posner (2010) pro-

pose a better approach by generating classes of problems with varying characteristics

then focusing on the relationship of problem structure and solution procedure perfor-

mance as advocated for in the work by Hooker (1995). Instance generation techniques

exist for each specific problem class examined but rely on a standardized set of prin-

ciples. The data generation principles from Hall and Posner (2010) include purpose,

comparability, unbiasedness, and reproducibility in instance generation schemes.

7

1.2 Research Objectives and Scope

This dissertation enhances several aspects in CO by developing methods for con-

trollable instance generation to assist in the empirical evaluation of solution proce-

dures. This work provides a diverse, unbiased, and reproducible instance generation

technique for creating synthetic data for the MDMKP. Additionally, this instance

generation technique is demonstrated to configure test instances with controllable

properties to achieve a diverse set of test instances.

This research contains two threads of research: the first thread examines instance

generation techniques and the second thread pertains to the empirical evaluation of

metaheuristics. Research in the first thread makes two contributions in Chapters

II and IV. The first involves developing an instance generation technique for the

MDMKP which is analyzed through the lens of instance space analysis (ISA). Af-

ter examining the empirical evaluation of metaheuristics in the second contribution

the third contribution revisits this instance generation technique to target specific

configurations of MDMKP test instances.

The second thread of research pertains to the empirical evaluation of metaheuris-

tics, discovering the relationship between solution procedure performance and meta-

heuristic performance, and the characterization of test instances. This thread contains

a single contribution in Chapter III focused on enhancing the ISA methodology by

addressing the algorithm selection problem (ASP) with an alternative machine learn-

ing model which provides an interpretable angle to predict the best metaheuristic of

a given instance. This contribution is the second contribution of this research and

the alternative model for the ASP is revisited in the third contribution of this work

for the targeted configurations of MDMKP test instances.

Both of these threads of research are focused on improving existing test instances

and conveying of results rather than developing new solution methodologies. Both

8

threads utilize ISA as the backbone to the methodology. This research shows multiple

avenues for ISA to be used. In particular, to identify strengths and weaknesses in the

test instances used in empirical testing and to indicate the effective and ineffective

solution methodologies for those test instances.

1.3 Organization of the Dissertation

Chapter II examines how to develop problem instances for the MDMKP such

that they characterize all possible problem structures to enhance the conclusions of

an solution procedure performance as Hooker (1995) advocates. This characterization

is motivated by the No Free Lunch (NFL) theorems of Wolpert and Macready (1997)

and the inability of an optimization solution procedure to dominate the performance

metrics of all possible problem instances.

Using the enhanced collection of test instances, Chapter III implements the exist-

ing metaheuristics from the literature and evaluates them through rigorous empirical

testing to discover which solution methods perform well across different instance con-

figurations. From these empirical tests, the relationship between the metaheuristic

performance and the instance configuration is explored to discover theoretical insights

as Hooker (1994) advocates.

Chapter IV explores the effectiveness of generating test instances with controllable

features which are unique to the existing collection of test instances. The previously

collected set of test instances provide background on the expected performance of

the targeted instances, which are then evaluated and compared to their expected

performance to characterize the effectiveness of the targeted generated scheme.

Chapter V provides concluding remarks and the appendix provides relevant sup-

plementary material for the first contribution. In addition, Chapter V discusses areas

9

for future extensions of this work for instance generation techniques and the empirical

evaluation of solution procedures.

10

II. Analyzing Problem Instances of the Multidemand
Multidimensional Knapsack Problem with Instance Space

Analysis

2.1 Introduction

Current research in optimization too often focuses on finding “novel” solution

methods and claiming state-of-the-art performance with marginal improvements us-

ing sometimes sparse evidence. In optimization, the success criteria for judging a

solution procedure is largely dependent on empirical assessments using a chosen set

of test instances. Solution procedures include algorithms to identify a proven optimal

solution, approximate algorithms to attain a feasible solution having a proven opti-

mality gap, and heuristic methods whose aim is to obtain a high quality but not nec-

essarily optimal solution. Although a theoretical focus is useful in the comparison of

algorithms, e.g., via worst-case or average-case analysis of algorithms, Hooker (1994)

prompted the optimization community to use empirical testing for the evaluation of

algorithms. The empirical evaluation of algorithms should reveal relationships be-

tween problem instance structure and solution procedure performance. Additionally,

the empirical study of solution procedures may also illuminate theoretical properties

within different solution methods.

In the testing and evaluation of algorithms, researchers propose a solution method

and evaluate its performance on instances with data sourced from real-world applica-

tions, existing benchmarks, or instances generated randomly through a set of proba-

bility distributions. Conclusions are based on comparisons that evaluate the average

results of the proposed solution methods to other solution procedures in the literature.

Hooker (1995) expressed concerns with this reporting structure because it does not

express enough nuance of the efficacy of a proposed solution procedure and instead

“resembles track meets more than scientific endeavors”. Inferring that the conclusions

11

hold beyond the tested instances are concerning because the underlying test data are

subject to structural issues such as a lack of diversity or bias. Additionally, some test

instances are unrepresentative of real world applications or may be trivial to solve.

Wolpert and Macready (1997) proposed the No-Free-Lunch (NFL) Theorem, which

states it is impossible for any one algorithm to outperform all other algorithms when

averaged over all possible optimization problems. In this manuscript we investigate

the NFL over instances of a single optimization problem. We search for the weaknesses

and strengths of an algorithm across the variety of possible instance configurations.

Current research relating to instance generation is one sided in that it only addresses

identifying instances which leverage the strengths of a procedure while ignoring in-

stances which may indicate procedural weaknesses. In coordination with the ideas

expressed by Hooker (1995), NFL indicates the need to clarify strengths and weak-

nesses of a solution procedure. By utilizing both aspects of success and failure, the

empirical evidence informs both the theoretical worst-case and best-case settings for

a given problem.

Smith-Miles (2019) developed Instance Space Analysis (ISA) to better under-

stand solution procedure performance and its relation to problem structure. ISA

addresses the concerns of a fair evaluation of solution procedures in a standardized

methodology across problem classes. ISA is presented through a series of publica-

tions beginning with Smith-Miles and Lopes (2012) in measuring instance difficulty,

followed by Smith-Miles et al. (2014) in examining the algorithmic strengths and

weaknesses across the instance space, and Smith-Miles and Bowly (2015) in generat-

ing new instances unique to the defined instance space. The visualization method-

ology was improved with a novel projection algorithm (Muñoz et al., 2018), and

the final methodology supporting the online tool MATILDA (Smith-Miles, 2019) is

summarized in a recent tutorial paper (Smith-Miles and Muñoz, 2021).

12

ISA provides a two-dimensional visualization of all test instances and condenses

the information of all problem features into a convenient mapping of their structure.

In this mapping, the similarities and differences of problem instances based on their

structure is shown in a scatterplot defined by a “coordinate system that systemati-

cally locates the instances in the two-dimensional plane to facilitate visualization of

trends in relationships across the instance space” (Smith-Miles and Muñoz, 2021).

Theoretical boundaries of all possible instances are established by discovering the up-

per and lower bounds of all feature values and projecting them into the same instance

space of the existing test instances. These boundary conditions indicate potential ar-

eas within the instance space where no instances currently exist, indicating the need

for additional methods to generate instances in these underrepresented regions. If

the performance of a suite of solution procedures is measured, the instance space en-

ables researchers to discover regions presenting distinguishable performance. These

regions, which visualize good performance for a particular solution method across the

instance space, are termed algorithm footprints (Smith-Miles et al., 2014).

Numerous applications of ISA address optimization problem classes such as the

graph coloring problem (Smith-Miles and Baatar, 2014), knapsack problem (Smith-

Miles et al., 2021), and the max flow problem (Alipour et al., 2023). ISA is applicable

to areas outside of optimization including classification (Muñoz et al., 2018), regres-

sion (Muñoz et al., 2021), and anomaly detection (Kandanaarachchi et al., 2020) in

machine learning (ML) settings. ISA is applicable to multiple research areas with

a combination of algorithmic solution methods and data to derive empirically based

conclusions. ISA assists researchers in providing scrutiny to the reporting of results

beyond aggregate statistics of performance measures.

Other work examining problem structure and mapping it towards solution proce-

dure performance includes applications in knapsack problem (KP) variants. Hill and

13

Reilly (2000) examine the correlation structure between the knapsack constraints and

the objective function coefficients of the two-dimensional knapsack problem (2KP).

The authors examine both an exact approach (CPLEX) and a heuristic (Toyoda,

1975) to measure the impact of correlation structure on solution procedure perfor-

mance. Results indicate a negative correlation structure between the two knapsack

constraints severely degraded the heuristic’s performance and CPLEX struggled in

scenarios having large differences of correlations between objective function values

and constraint coefficients.

Cho et al. (2008) expand upon these findings in the 2KP by showing the lack of

diversity in the test problem generation schemes used for analysis of solution pro-

cedure performance. They utilize the instance generation technique from Hill and

Reilly (2000) that covers the full range of correlation structures between the objec-

tive function values and constraints. Leveraging the new collection of test instances,

the authors propose two heuristics for the 2KP which outperform existing heuristics

on both the legacy test instances and newer, more diverse test instances. Similar find-

ings on the implications of poorly formed test instances in KP variants are discussed

by Hill et al. (2011).

Hall and Posner (2007) examine several problem characteristics which impact the

performance of solution procedures for the 0-1 KP. The authors summarize the key

features as problem size, characteristics of item values, characteristics of item sizes,

relationships between item value and item size, knapsack capacity, and characteristics

of the linear relaxation solution. These features are used in the feature space defined

by Smith-Miles et al. (2021).

Smith-Miles and Lopes (2012) explore multiple types of combinatorial optimiza-

tion problems and characteristics to distinguish between trivial and difficult problems.

These characteristics define the feature space and include features which are either

14

problem independent or problem dependent. The authors discuss problem specific fea-

tures for a variety of combinatorial optimization problems including the assignment

problem, the traveling salesman problem (TSP), the KP variants, the bin-packing

problem, and optimization problems on graphs. Certain aspects of graph problems

provide measures stemming from spectral graph theory (Chung and Graham, 1997).

Hill and Reilly (2000) demonstrate instance generation using an explicit correla-

tion induction (ECI) method. Their explicit method imposes a specified correlation

structure across the population of instances in contrast to an implicit correlation in-

duction (ICI) method which implies a correlation structure but does not guarantee it.

Reilly (2009) discusses the shortcomings of implicit correlated induction generation

methods for the 0-1 KP by revealing the lack of a full range of correlation coefficients

between classes of generated test instances. The long accepted correlation classes of

weak, almost strong, strong, correlated, and others all exist within the rather narrow

range of 0.97 to 1. Similar findings from Pisinger (2005) motivated the creation of

new correlation classes for the 0-1 KP.

Synthetic data generation requires a generation scheme adhering to principles of

correctness, applicability, and reproducibility (Hall and Posner, 2010). A method for

instance generation with ISA proposed by Smith-Miles and Bowly (2015) produces

controllable instance characteristics by filling observed gaps in the instance space

using a genetic algorithm (GA). The authors demonstrate their instance generation

method in the context of the graph coloring problem and has been expanded to the

0-1 KP by Smith-Miles et al. (2021). Their methods include modifying the strategy

for selection of target points in the instance space and using a customized fitness

function for evaluation in the GA. The results indicate a significant portion of the

instance space area filled by evolved points.

Bowly et al. (2020) propose a method for an instance generation scheme for linear

15

programs (LP) which is expandable to an integer-restricted case. Their construction

method relies on an alternative encoded space to form an optimal solution and as-

sociated instance parameters, subsequently transforming the encoded instance into

a feasible, bounded LP. The authors explore the trade-offs of different instance gen-

eration parameters and their effect on the distribution of meta-features for the class

of LPs. In comparison, this research offers an alternative, sampling-based approach

focused on discrete optimization problems.

This paper extends the use of ISA and provides a novel problem generation method

based on sampling methods that identify difficult but feasible instances of the mul-

tidemand, multidimensional knapsack problem (MDMKP). We demonstrate ISA as

a tool to observe where the current benchmark test instances lie within the instance

space and to validate the novelty of generated test instances. We introduce two new

sets of test instances for the MDMKP: one set of test instances focused on correla-

tion structure and another set of test instances focused on feasibility. Our findings

indicate the proposed generation method covers the instance space while maintaining

feasibility for the generated MDMKP instances.

The remainder of this work is as follows. Section 2.2 decomposes the problem

of interest into its components of ISA, after which Section 2.3 shows the current

collection of instances lie within the instance space. Within Section 2.4, this instance

space is augmented with a new set of instances to fill gaps therein, noting its impact

on the ISA methodology. Further discussion associates the difficulties with instance

generation methods in terms of feasibility. These issues are addressed with a new

instance generation technique able to generate feasible instances across a robust set

of problem settings. Finally, Section 2.5 summarizes the contributions of this work

and proposes directions for future work.

16

2.2 Instance Space Analysis

ISA is motivated by the Algorithm Selection Problem (ASP) proposed by Rice

(1976). The ASP is concerned with selecting the best algorithm in the algorithm space

(A) to maximize the performance in the performance space (Y) given a problem space

(P). From this problem space, a set of measurable problem features of interest then

defines the feature space (F). Each of these sets form the collection of meta-data

{P ,F ,A,Y}. The framework for ISA is illustrated in Figure 1, with the addition of a

problem subset (I ⊂ P) being inferred by Rice (1976) rather than the problem space.

The focus of ISA is to assist in a well constructed problem subset of the problem

space (I) to better inform the construction of the remaining meta-data.

Figure 1. Summary of Algorithm Selection Problem (Rice, 1976) shown in dotted
box, extended upon by Smith-Miles et al. (2014)

17

The Melbourne Algorithm Test Instance Library with Data Analytics (MATILDA)

helps posture ISA as an accessible tool for researchers across multiple domains (Smith-

Miles, 2019). In MATILDA the steps for conducting ISA are outlined as:

Initialization - Generate the meta-data {I,F ,A,Y} shown in Figure 1.

1. Generate the instance space through the selection of key features and then

project into a two-dimensional space through a dimension reduction technique.

2. Visualize the existing problem instances to examine the diversity, unbiasedness,

and span of existing problem instances.

3. Visualize the algorithm footprints by examining the results of the algorithm

performance in different regions of the projected space.

4. Explain strengths and weaknesses of each algorithm across the distribution of

key features and the algorithm performance.

5. Use a ML classification algorithm to determine the proper algorithm portfolio

for the Algorithm Selection Problem.

6. Generate new instances to fill any gaps present in the instance space. Return

to Step 1.

2.2.1 Problem Space

This work considers an extension of the 0-1 multidimensional knapsack prob-

lem (MKP) in which there are greater-than-or-equal-to inequalities added to the

usual MKP formulation. Additionally, the objective function coefficients are not

constrained in sign. This KP variant is referred to as the 0-1 multidemand, multidi-

mensional knapsack problem (MDMKP) (Cappanera and Trubian, 2005).

18

Given a set of n items to decide whether or not to include in a knapsack with

integer profits/costs cj and integer weights wij across dimensions m + q, solving

the MDMKP involves finding the optimal selection of items such that sum of their

profits/costs are maximized/minimized. The knapsack has capacity limits across m

dimensions and demand requirements across q dimensions such that total weight

does not exceed capacity across all m dimensions while meeting demand across all q

dimensions. The MDMKP is formulated as:

max
n∑

j=1

cjxj (1)

s.t.
n∑

j=1

wijxj ≤ bi, for i = 1, . . . ,m, (2)

n∑
j=1

wijxj ≥ bi, for i = m+ 1, . . . ,m+ q, (3)

xj ∈ {0, 1}, for j = 1, . . . , n, (4)

where xj is a binary decision variable to determine whether to include item j in

the knapsack. Additionally, the right-hand-side (RHS) capacity/requirement values

are positive, i.e., bi > 0 for i = 1, . . . ,m + q, and the weights are assumed to be

nonnegative, i.e., wij ≥ 0 for i = 1, . . . ,m+ q, j = 1, . . . , n.

An MDMKP is well-stated if
∑n

i=1wij > bi for i = 1, . . . ,m + q; maxj{wij} ≤ bi

for i = 1, . . . ,m; and minj{wij} ≤ bi for i = m + 1, . . . ,m + q. Meeting these

conditions result in an MDMKP instance in the absence of redundant constraints

and without a feasible solution when fixing all decision variable values to zero. Each

of the m constraints in (2) are referred to as a knapsack constraint and each of the q

constraints in (3) are a demand constraint.

Similar to the MKP, the MDMKP has practical applications by being embedded

within other optimization problems such as facility location problems, capital bud-

19

geting, and portfolio-selection. In terms of computational complexity, the decision

version of the 0-1 KP is weakly NP-complete, and by consequence the MKP and the

MDMKP as well, unless P = NP (Kellerer et al., 2004a). In practical computation,

the MDMKP is more difficult than the MKP because feasibility is no longer trivial.

The demand constraints and classic knapsack constraints are in direct opposition to

each other, removing a heuristic initialization of a null solution. A survey of the

developments in the multiple, multidimensional, and quadratic knapsack problems in

addition to other variants is discussed in Cacchiani et al. (2022).

2.2.2 Subspace of Instances

The primary source of MDMKP instances is the OR-Library (Beasley, 1990).

These instances, referred to as the Beasley set of instances, originate from the in-

stance generation method set forth by Cappanera and Trubian (2005). The authors

utilize knapsack constraints from MKP instances defined by Chu and Beasley (1998)

augmented with demand constraints and objective function coefficients. The genera-

tion procedure is as follows: The number of knapsack constraints m are set to 5, 10,

and 30, while the number of demand constraints q are dependent on m. After fixing

m, q may be set to q = 1, q = m/2, or q = m. The number of variables n is set to

100, 250, or 500, as implemented by Chu and Beasley (1998).

The constraint coefficients are based on a random uniform distribution. The

parameters used in the knapsack constraints for the constraint coefficients, as well

as the RHS values, are adopted from the corresponding instances defined by Chu

and Beasley (1998). The parameters for the demand constraints utilize the same

generation method. In particular, each coefficient aij is selected from a discrete

uniform generator UniformInt(0,1000). The RHS bi are dependent on the tightness

ratio α, defined as bi = α
∑n

j=1 aij where α ∈ {0.25, 0.5, 0.75}.

20

The objective function coefficients cj are constructed to produce an implicit cor-

relation between both types of constraints and the objective function. Since the

MDMKP allows cj to be unconstrained, Cappanera and Trubian (2005) create two

cases of MDMKP instances: cost coefficients assumed to be all positive and cost

coefficients unconstrained in sign. The positive cost coefficient case are defined as

cj =
m∑
i=1

aij
m
−

m+q∑
i=m+1

aij
q

for j = 1, . . . , n,

while the coefficients are then shifted by a ∆-value to enforce the positive case as

cj = cj +∆+ 500uj.

The shift value ∆ is defined as

∆ =

1 + |minj{cj}| if minj{cj} < 0

0 otherwise,

and the coefficient is scaled by uj, a real number drawn from a uniform generator

Uniform(0,1). The unconstrained objective function coefficients are referred to as

mixed cost coefficients and defined as

cj =
m∑
i=1

aij
m
−

m+q∑
i=m+1

aij
q

+ 500uj for j = 1, . . . , n,

where uj is a real number drawn from a uniform generator Uniform(0,1). Because

the number of demand constraints varies according to fixed m, the set of coefficients

are scaled such that there are nq/(m+q) negative coefficients. Cappanera and Trubian

(2005) select the first half of the Chu and Beasley MKP instances, then generate six

problems from each instance: three from the positive case with q = 1, q = m/2, or

21

q = m and three from the mixed case with q = 1, q = m/2, or q = m. There are 810

instances and all are found in the OR-Library (Beasley, 1990).

2.2.3 Algorithm Space

The portfolio of solution methods used in MDMKP research is limited to meta-

heuristic methods. Cappanera and Trubian (2005) generate instances of the MDMKP

in addition to proposing a two-stage tabu search metaheuristic where an outer and

inner search method is performed. The outer search oscillates between the feasible

boundaries through a constructive and destructive phase to find feasible solutions.

The outer search method is based on strategic oscillation described by Glover and

Kochenberger (1996). The inner search mimics a standard tabu search method with

the collected feasible solutions from the outer search.

Arntzen et al. (2006) propose another method rooted in tabu search. Their meta-

heuristic also examines the infeasibility of a solution but measures it against the

objective function value. This method performs well in the “tight” MDMKP formu-

lations found in the OR-Library but is less desirable for instances where feasibility is

not an issue.

Lai et al. (2019) also utilize a nested tabu search framework by first performing an

exploratory search for feasible solutions and a second search to exploit the collected list

of candidate solutions. Both stages of the search process are guided by a penalty-based

evaluation function. Their results indicate the approach performs well in settings with

a larger number of knapsack and demand constraints.

Hvattum and Løkketangen (2007) leverage a scatter search method on the MDMKP.

Gortazar et al. (2010) also utilize a scatter search method on a variety of general

classes of binary integer programs including the MDMKP. The authors apply a pe-

nalization approach for constraint violations of the MDMKP. An exact method was

22

proposed by Hvattum et al. (2010) that employs an alternating control tree (ACT)

search method which may also yield inexact solutions, depending on the user’s spec-

ifications.

A key aspect of ISA is the comparison of algorithmic performances across the

instance space. In this work, the focus is not on evaluating different solution pro-

cedures but instead using ISA as a tool to demonstrate the inadequacy of current

benchmark problem sets. Therefore, the collection of instances are solved with the

Gurobi commercial solver to provide a performance measure to help characterize in-

stance difficulty.

2.2.4 Performance Space

The MDMKP is not a trivial problem and has yielded varying results in terms

of finding optimal solutions in reasonable time. Song et al. (2022) demonstrate this

by utilizing CPLEX version 12 with a 7200 seconds (2 hours) hard limit on each

of the 810 instances from Beasley (1990). Of the 810 instances, CPLEX solved 722

to optimality or terminated after 1 hour of no improvement of the optimality gap,

67 instances had feasible but not guaranteed optimal solutions, and in 21 instances

CPLEX was unable to find a feasible solution. We have similar findings in Gurobi;

it solved 602 instances to within 1% of optimality, identified feasible solutions to 200

instances within 15 minutes, and 8 instances without finding a feasible solution within

15 minutes.

Other KP variants instances tested in the literature are solvable within several

seconds (Lu and Vasko, 2020), stressing the importance of classifying instances as

difficult or easy before using a solver. Solving a problem with an estimated time

based on problem structure is beneficial in real-time decision making settings. Since

the majority of the benchmark instances are solvable to within a 1% optimality gap

23

in a reasonable time, the wall-clock time is used as the measure of instance difficulty.

For instances where a feasible solution is not found, the wall-clock time is set to

the hard limit (15 minutes). This limit is selected because, in preliminary testing

for a subset of Beasley instances, Gurobi produced optimal solutions 5 to 10 times

faster than CPLEX. For those instances, previous work by Lu and Vasko (2020) used

CPLEX with a 2-hour time limit to identify optimal solutions to MDMKP instances.

We utilize an Intel© CoreTM i7-11700 CPU at 2.5GHz with 32 GB RAM for each of

our tests.

Alternative measures of instances’ difficulty include setting the wall-clock time to

a fixed constant and then observing the optimality gap across instances, but such a

method also requires a user decision regarding how to handle the case in which no

feasible solution is identified. Therefore, we select our runtime performance measure

as the wall-clock time to get a solution within 1% relative optimality gap between

the primal bound zP and the dual bound zD, as defined in (5).

Relative Gap =
zP − zD
|zP |

(5)

2.2.5 Feature Space

The feature space is defined by characteristics which capture the structure present

within a given instance. The meta-features are defined in Table 1 and are based on

research by Hall and Posner (2007) and Smith-Miles et al. (2021) on the 0-1 KP

in addition to work by Hill et al. (2012) and Hill and Reilly (2000) on the MKP.

A difficulty in defining meta-features for the MKP is the multidimensional number

of constraints which typically results in a vector of meta-feature values with varying

dimension. Therefore, summary statistics such as the minimum, maximum, and mean

of the vector of meta-feature values are reported for the respective meta-features in

24

Table 1.

The MDMKP is a unique MKP variant due to its additional class of constraints

and unrestricted objective function coefficients. The added demand constraints are

not linked to the same dimension as the knapsack constraints, therefore these items

are treated as “required” amounts of items in each dimension. The unconstrained

sign of the profit coefficients also eliminates most heuristic approaches used in the

KP. For example, in a greedy heuristic the 0-1 KP the profit coefficients are divided

by the associated weight coefficients to generate “efficiency” measures of each item

(i.e., ei = pi/wi). In the MDMKP, the efficiencies become difficult to define due to

the possible negative numerator while also considering the weight associated across

multiple dimensions in the knapsack constraints. The demand constraints complicate

these heuristic measures further in the case wherein some items with lower weights in

the knapsack constraints (efficient) are correlated having lower weights in the demand

constraints (inefficient).

Discovering meta-features requires significant domain knowledge over the partic-

ular problem of interest and the existing instance generation methods. The MDMKP

contains meta-features related to the other KP variants, but the instance generation

methods are susceptible to generating instances with concealed biases. For example,

the instance generation procedure of Chu and Beasley (1998) for the MKP does not

vary the constraint tightness across dimensions for a given instance configuration. If

the constraint tightness does not vary across constraint dimensions within a given

instance configuration, it is less likely to be a key meta-feature in the ISA methodol-

ogy. For example, if the constraint tightness varies across constraint dimensions then

meta-features are needed to summarize the distribution of tightness values measured

across instances. Due to the arbitrary process of engineering meta-features, knowl-

edge in the problem domain and of the existing biases in the instance generation

25

methods is a requirement to discover meaningful meta-features.

26

Table 1. Meta-features for the MDMKP

Feature Name Description - Constraint Type - Statistic
Decision Vars Number of decision variables.
Constraints Number of constraints - Knapsack and demand.
Constraint
Tightness bi∑

j wij
,∀i - Both - Min, max, and mean.

Prop Part
Dominance Proportion of items pairs i, j where pi ≥ pj and

wik ≤ wjk, or pj ≥ pi and wjk ≤ wik for any k
constraint - Knapsack and demand.

Obj to Constraint
Correlation Pearson correlation coefficient between objective

function coefs and constraint coefs for dimension
k - Knapsack and demand - Min, max, and range.

Within Constraint
Correlation Pearson correlation coefficient within same class of

constraint coefficients for dimension k - Knapsack
and demand - Min, max, and range.

Across Constraint
Correlation Pearson correlation coefficient across classes of con-

straint coefficients for dimension k - Knapsack and
demand - Min, max, and range.

Coefficient of Var
Weights Coefficient of variation of weight coefficients across

k dimensions - Knapsack and demand.
Coefficient of Var
Profits Coefficient of variation of profit coefficients.

27

2.3 The Instance Space

The collection of instances, their respective features, and their difficulty measured

by the Gurobi solver constitute the meta-data necessary for ISA. The ISA toolkit is

executed using MATLAB and is available to download on GitHub (Muñoz and Smith-

Miles, 2020b). The methods used in the toolkit are described in work by Smith-Miles

and Muñoz (2021). The toolkit is automated to perform necessary data preprocessing,

feature selection, and instance space visualization across features, algorithms, and

data sources. The authors provide customization through an options file to match the

users preferences for automatically selecting features, selection criteria, and number

of iterations in the functions employed in different stages of the toolkit.

The following description is an overview of the ISA process to reproduce the anal-

ysis used in this section. The instance space is constructed by sequentially performing

three methods: the Preparation for Learning of Instance Meta-data (PRELIM), the

Selection of Instance Features to Explain Difficulty (SIFTED), and Projecting In-

stances with Linearly Observable Trends (PILOT).

Initially, PRELIM is conducted for the meta-features through a Box-Cox variance

stabilization transformation followed by standardizing the meta-features to a standard

normal distribution with a z-transformation. From this collection of meta-features,

SIFTED is required to distinguish the relevant meta-features and thereby reduce the

number of meta-features to project into the two-dimensional instance space.

SIFTED uses the correlation ρ between the meta-features and the performance

metrics to find informative features. The performance metric may either be absolute,

indicating the performance is good if it exceeds a specified threshold value ϵ, or

relative, for which the performance is good if it is marginally close to the best solution

procedure y∗. We use an absolute measure of performance with ϵ = 0.2, indicating the

solution procedure performance is good if it is the top 20% of the observed response

28

values. We set our minimum requirement for the correlation between meta-features

and wall-clock time as ρ = 0.3.

After collecting a reduced set of meta-features, an optimal subset of features is

found by enumerating combinations of meta-features and their predictive capability

towards the performance metric. In particular, SIFTED clusters features based on

their dissimilarity measured by the correlation between (i, j) feature pairs (i.e., 1 −

ρi,j). The number of clusters is user specified, and we use a default value of 10

clusters. With the 10 clusters of similar features, a single feature is obtained from

each cluster, the subset of features are projected to a temporary two-dimensional

instance space using principal component analysis, then fed into a random forest

classifier model (Breiman, 2001) to distinguish between easy and hard instances. The

“optimal” subset is chosen based on the predictive accuracy of the random forest

model. From this subset selection method, we reduce our meta-data dimensionality

to 10 key meta-features which constitute the instance space.

The configured instance space is then projected into a two-dimensional instance

space for visualization purposes. PILOT is a dimensionality reduction scheme to take

the important subset of features and produce an optimal two-dimensional instance

space with a linear trend from edge to edge in the instance space. The projection is

based on a convex global optimization problem with infinitely many solutions due to

being highly ill-conditioned (Muñoz et al., 2018). Therefore PILOT is solved numer-

ically using the Broyden-Fletcher-Goldfarb-Shanno (BFGS) optimization algorithm

with a user specified number of starting points Ntry and yields the projection which

results from the solution to the global optimization problem found with the best

topological preservation. Topological preservation is measured by the correlation be-

tween the distances in the ten-dimensional feature space and the distances in the

two-dimensional instance space. PILOT resulted in the projection matrix shown as

29

(6) for the final set of 10 meta-features to a two-dimensional instance space (Z1, Z2).

 Z1

Z2

 =

−0.3081 −0.3040

0.3860 −0.2429

0.0309 0.1971

0.1977 0.3588

−0.3773 0.2181

−0.2576 −0.2814

0.2652 0.1901

−0.2353 −0.1835

−0.2794 −0.0911

−0.2953 0.2224

T

Constraints KP

Prop Part Dominant Demand

Max Obj to Constraint Corr KP

Min Obj to Constraint Corr KP

Min Obj to Constraint Corr Demand

Range Within Constraint Corr KP

Min Within Constraint Corr Demand

Range Within Constraint Corr Demand

Max Across Constraint Corr

Coefficient of Var Weights Demand

(6)

Figure 2 shows the resulting instance space for the collection of instances from

Beasley (1990). The instance space consists of two bands separated by a gap in

the instance space, an attribute Hooker (1995) labeled as problem diversity. The

two bands are determined mostly by the type of objective function, as defined by

Cappanera and Trubian (2005). The first three categories of objective function types

are the positive cost coefficient cases defined in Section 2.2 with the respective number

of demand constraints dependent on the number of knapsack constraints m i.e., with

q = 1, q = m
2
, and q = m. The last three categories of objective function types are

the mixed cost coefficient cases with the same respective relationships between the

demand and knapsack constraints. The two groups are largely characterized by the

number of demand constraints. The lower-right cluster is comprised of the q = 1

objective function type for both cases with close to half of the q = m
2
instances in the

upper-right region of the instance space. The upper-left cluster is comprised of the

q = m objective function type for both cases with the q = m
2
instances spread across

30

the cluster.

Figure 2. Instance space for the MDMKP based on the instances from Beasley
(1990), with projection defined by (6)

PILOT provides an optimal solution to the projection from a ten-dimensional to

two-dimensional visualization with linearly observable trends between instance diffi-

culty and the feature values. The resulting visualization conveys these relationships

from one edge of the instance space to another. Table 2 shows the difficulty of in-

stances, grouped by the type of objective function, reporting the average solution

time required for each objective function type. For the positive coefficient case, the

average time required to identify a within 1%, near-optimal solution is 188 seconds,

while the mixed case required an average of 382 seconds. However these averages

do not capture the variability within each problem class, which exhibit heavy-tailed

distributions with standard deviations over 150 seconds for each objective function

type.

Since PILOT creates linear trends and clusters through instance difficulty, we

report lower solution times for the single demand constraint objective functions, with

larger difficulties as the number of demand constraints is increased. ISA reports the

31

difficult instances lie in the lower-left region of the instance space.

Table 2. Average runtimes (seconds) to identify a within 1% near-optimal solution by
objective function type.

Positive Mixed
q = 1 100.1 64.1
q = m

2
286.1 359.3

q = m 302.9 404.8
Average 188.3 382.1

2.3.1 Augmenting the Instance Space

Previous research on the 0-1 KP and the MKP investigating problem structure

found a lack of a range of correlation structures across instances. Reilly (2009) dis-

cusses the lack of ranges of correlation values with the 0-1 KP and Hill et al. (2012)

in the MKP. In the MKP, the correlation between the objective function and each

dimension of the knapsack constraint is computed. From this standpoint, we examine

the correlations for the current collection of MDMKP instances respectively in Fig-

ures 3 and 4 for the knapsack constraints and the demand constraints, for which we

report similar findings. Ideally the range should contain instances with correlations

from -1 to 1.

In the correlation between both types of constraints, across each objective func-

tion type, the current collection of instances is lacking the full range of correlation

values. For the knapsack constraints, the range is limited to -0.25 to 0.25. The de-

mand constraints show a different pattern across objective function type; the first

and fourth types having q = 1 exhibit highly negative correlations, whereas the other

objective function types; correlations trends towards zero because of the instance

generation technique adopted from Cappanera and Trubian (2005). In this subset of

meta-features for the MDMKP, the correlation between the objective function coef-

ficients and constraint coefficients poses concerning issues due to their limited range

32

of correlation values observed.

Figure 3. Correlation between cj and
wij for i = 1, . . . ,m

Figure 4. Correlation between cj and
wij for i = m+ 1, . . . ,m+ q

Cho (2005) develop a new set of instances for the MKP with a set correlation

structure between the objective function coefficients and the knapsack constraints.

These MKP instances were employed to test the effectiveness of heuristic methods

for the MKP in Hill et al. (2012). The test instances from Cho (2005) also allow for

varying tightness for each RHS value across each dimension of the MKP. From this

MKP instance, an MDMKP instance is constructed by adding demand constraints

from a discrete uniform generator UniformInt(0,1000) and setting the RHS based

on the same tightness ratios used in Cappanera and Trubian (2005). The MDMKP

instance is then checked for feasibility and is removed if an infeasible instance is

generated. We generate 165 feasible MDMKP instances to add to our problem space.

This instance generation method is an ECI method because the correlation struc-

ture is set a priori and the instance parameters are augmented to match. Of note, the

method from Cappanera and Trubian (2005) is also considered to be an ICI method

because the correlation is assumed, but not guaranteed, to match the desired corre-

lation structure. By using the ECI method on the set of knapsack constraints for our

165 instances, we generate instances with correlation values from -1 to 1.

The unique aspects of these new MDMKP instances, referred to as the Cho set

33

of instances (Cho, 2005), are the correlation structure and the varying tightness of

the RHS values for the knapsack constraints. The Beasley set of instances (Beasley,

1990) rely on an induced correlation structure and fixed tightness of the RHS values

for both classes of constraints. We utilize the constructed instance space from the

Beasley instances to see the impact of the newly constructed Cho instances in filling

the instance space. By keeping the ISA methods from Section 2.2 the same, we utilize

the projection matrix in (6) to create Figure 5.

Figure 5. Instance space for the MDMKP based on the instances from Beasley
(1990), augmented with instances generated from Cho (2005)

The generated Cho instances cover some of the gaps present within the instance

space. The space between the two large clusters of MDMKP instances from the

Beasley set of instances is partially filled by the newly generated instances. Unfor-

tunately, the projection in (6) is optimized for the Beasley set, making it difficult to

project the Cho set. Figure 6 portrays an updated instance space with a projection

optimized for both the Beasley set and Cho set. The instance space is separated into

two clusters defined by each instance source.

The updated instance space in Figure 6 portrays a different story than exhibited

by Figure 5. Due to the introduction of a different set of instances, the projection

matrix shown in (7) reveals a different grouping of important meta-features relevant

34

Figure 6. Instance space for the MDMKP based on Beasley and Cho instances

across both sets. There is not a lot of overlap between the two problem sets shown

in Figure 6, which is expected given their varied problem generation methods.

The impact of the added set of instances on the feature selection process is il-

lustrated in the differences of their projection matrices. Originally, no meta-features

pertaining to the tightness of the constraints were found to be important for charac-

terizing the instance space. After adding the Cho instances, which vary the tightness

across each dimension of the knapsack constraints, the feature is found to be impor-

tant. However, of the new set of ten features shown in (7), five remained the same,

albeit with different weights.

To assess the distribution of meta-features across the instance space, the features

are individually selected and shown as their value increases where they lie within the

instance space. These figures are provided in A. The lower-right portion of the in-

stance space consists of the easier instances in the instance space. The easier instances

are correlated with less knapsack constraints and demand constraints, a smaller range

of objective function to demand constraint correlation values, and decreased values

for the max across constraint correlation. While difficult instances are found with

increased values of max across constraint correlation, and lower values of the min

35

within constraint correlation for demand constraints.

ISA fits a support vector machine (SVM) as a classification model to the meta-data

with k-fold cross validation to predict the best algorithm to use for each instance. In

our work with only one algorithm, the SVM performs a binary classification of whether

or not Gurobi performs well on a given instance. With our augmented instance space

we predict classes with 89.80% accuracy with k = 5 folds. For comparison, with

only the original Beasley instances and projection from (6), we obtain an accuracy of

90.10%. In both cases, our current collection of meta-features sufficiently characterize

the MDMKP.

 Z1

Z2

 =

0.5091 −0.3914

0.0064 −0.6332

−0.4568 −0.5807

−0.4224 −0.6215

0.0399 −0.5695

0.7947 −0.0912

−0.7691 −0.0116

−0.4456 0.3111

0.4997 −0.2804

−0.4682 −0.5941

T

Constraints KP

Constraints Demand

Max Constraint Tightness KP

Max Obj to Constraint Corr KP

Range Obj to Constraint Corr Demand

Min Within Constraint Corr Demand

Range Within Constraint Corr Demand

Max Across Constraint Corr

Min Across Constraint Corr

Coefficient of Var Weights KP

(7)

Augmenting the instance space through instances defined for the MKP introduces

several problems illustrated in this work. While the instance space shown in Figure 6

indicates the new instances are exploring separate regions of the instance space, they

lack a full exploration of possible meta-feature values. Of the 165 feasible MDMKP

instances from the Cho set, 160 contained one demand constraint, and the remaining

5 contained only two demand constraints. The varying constraint tightness ratios

36

across each knapsack constraint dimension impairs the number of demand constraints

to construct a feasible instance. Because of the lack of difficult demand constraints,

the average solve time for an instance from the Cho set of instances is 0.07 seconds.

2.4 Feasibility Considerations on Robust Problem Construction

Constructing feasible instances is a large issue in instance generation schemes. In

optimization problems defined on a graph, such as a shortest path problem, a feasible

path must exist from the source to sink node. Therefore, the adjacency matrix or

adjacency list must characterize a directed graph with at least one feasible path. In

algorithmic testing settings, it is desirable to examine instances having more than one

feasible solution. Finding the number of feasible solutions for a given instance itself

is a hard problem which requires enumeration.

Feasibility becomes less difficult to achieve for less complex problems such as the

TSP or 0-1 KP because there are fewer competing aspects to consider. Relative to

the 0-1 KP, the MKP addresses an increased number of dimensions. However the

null solution of selecting no items remains feasible for both KP variants. A difficult

aspect of the MDMKP is the introduction of the demand constraints, which removes

the guarantee of a feasible null solution. Increasing the number of dimensions for

the demand constraints also creates a more complex problem for which to construct

feasible instances. Lastly, the consideration of creating a well-stated MDMKP is

another difficult aspect to creating MDMKP instances.

Feasibility also competes with other desirable properties (e.g., diversity) in an

instance generation scheme. Given an instance generation method which produces

feasible instances, such as the method set forth by Cappanera and Trubian (2005)

for the MDMKP, the generation scheme may not be flexible enough to fully explore

the instance space. In previous work of KP variants, the correlation structure and

37

knapsack constraint tightness were important for determining problem difficulty (Hill

et al., 2011). In the Cho set of instances, our work involved changing the tightness

across each dimension of the knapsack constraints in the MDMKP but resulted in

a number of infeasible solutions. Whereas the Beasley instances demonstrated an

easier method to create feasible MDMKP instances, they result in a lack of variation

in constraint tightness across the dimensions of the knapsack.

2.4.1 Feasible Instance Generation

To address these competing issues of feasibility and diversity, we introduce the

Primal Problem Instance Generator (PPIG). PPIG is a sampling-based instance gen-

eration method which begins in the primal feasible space. Detailed in Algorithm 1,

the method involves generating a set of k solutions where each decision variable is

set active (i.e., to a value of 1) with probability p. The instance’s left-hand-side

(LHS) coefficients for each constraint are generated in some predetermined fashion to

obtain the problem meta-features desired. Each of the k solutions, when applied to

the constraint coefficients, yield the required RHS values for each of the k instances,

providing an empirical distribution of right-hand side values, which is then used to

set the final RHS values for each constraint for the problem instance.

38

Algorithm 1 Primal Problem Instance Generator

Input: Number of items n; Number of knapsack constraints m; Number of demand

constraints q; Number of simulations K;

Output: RHS values bi;

Wle ← UniformInt(0,1000) ▷ LHS values for knapsack constraints [m× n]

Wgr ← UniformInt(0,1000) ▷ LHS values for demand constraints [q × n]

for k = 1, . . . , K do

p← Uniform(0,1) ▷ Fix probability level

xk ← Bernoulli(n, p) ▷ Generate a vector of Bernoulli trials as a solution

rlek ←WlexT
k ▷ Calculate knapsack resources used [m× 1]

rgrk ←WgrxT
k ▷ Calculate demand resources used [q × 1]

for i = 1, . . . ,m do

bi ← 50{rlek } ▷ Median RHS value for knapsack constraints

for i = m+ 1, . . . ,m+ q do

bi ← 25{rgrk } ▷ 25th percentile RHS value for demand constraints

After generating the RHS values, the remainder of PPIG includes selecting the wij-

values from the W matrices. The objective function values follow the same procedure

as the mixed cost coefficient case used by Cappanera and Trubian (2005). The cj-

values are based on a weighted average between the knapsack and demand constraint

coefficients, shifted through a random number uj, drawn from a uniform generator

Uniform(0,1), and scaled so the number of negative cj-values is proportional to the

number of demand constraints q.

We utilize parameter settings similar to the Beasley and Cho sets of instances. In

particular, we generate instances with K = 100, n = {100, 150,

39

200, 250, 500}, m = {5, 10, 30}, and q = {1, m
2
,m}. This results in 45 new instances,

referred to as the Scherer set of instances, to examine within the instance space. The

selection for the number of items in the knapsack n is different than the other two

sets of instances because the initial results with n = 500 indicated most instances

did not solve to a 1% relative optimality gap within the maximum allowable time

(15 minutes). Generating instances with n = 150 or n = 200 results in instances

with wall-clock times less than the maximum time allowed. Additionally, the current

collections of instances are either solvable within 5 seconds or reach the maximum

time of 15 minutes. Therefore, the number of items is varied in smaller sets to obtain

distinguishing performance measures within these two extremes.

Compared to Bowly et al. (2020), PPIG samples the distribution of generated

LHS and RHS values to complete the instance generation. In contrast, Bowly et al.

(2020) focus on a single LP instance originating from an alternative encoded space

and transforming into the instance space with desirable meta-features. The approach

presented in this work is specific to the MDMKP and KP variants by allowing any

configuration between the objective function coefficients and constraint coefficients.

Both PPIG and the instance generation approach from Bowly et al. (2020) utilize

a construction method by starting from a solution and building an instance around

it. However, we characterize PPIG as a sampling-based approach because of its use

of parameter distributions from constructed parameter distributions, distinguishing

it from the method set forth by Bowly et al. (2020), which we characterize as an

inherently constructivist approach.

PPIG can efficiently generate feasible instances for a robust set of input parame-

ters. The time complexity of Algorithm 1 is O(N) which permits efficient construction

of any range of instances without feasibility issues. We empirically did not examine

any feasibility issues with our settings used for sampling the RHS values. If the pa-

40

rameters (n,m,q,p) are set to match the parameters (n,m,q,α) in the Beasley set of

instances, the resulting RHS values are feasible.

PPIG is more likely to construct infeasible instances at the extremes of parameter

settings. For example, the probability level p is chosen uniformly from 0 to 1, if the

distribution is bimodal with p < 0.1 or p > 0.9, the resulting RHS distributions will

produce instances with respectively tight or loose constraints. Another parameter

setting is the percentile of the distribution of RHS values from which to sample the

bi-values. We utilize the median and 25th percentile for the respective knapsack and

demand constraints because they allow a varying degree of constraint tightness while

preserving feasibility in the cases we observe. When we utilized the “best-case” of

both RHS distributions, i.e., the maximum observed rlek -value and minimum observed

rgrk -value for each repetition k, we would guarantee feasible instances but obtain trivial

instances with no constraint slackness across any dimension.

2.4.2 Analysis of Feasible Instances

The Scherer set of 45 MDMKP instances contain both easy and difficult to solve

problem configurations. Of the 45 instances, 40 were solvable to the optimality gap

in less than 15 minutes with an average solution time of 21 seconds. The remaining 5

instances where in either of two other categories; 4 instances had identified a feasible

solution, but Gurobi could not identify a 1% gap, nearly optimal solution within 15

minutes; and 1 instance eluded the identification of a feasible solution in the allotted

runtime.

To verify the Scherer set of instances are novel to the instance space, the instances

are projected into the instance space of the Beasley and Cho instances via (7) and

shown in Figure 7. The 45 instances help fill gaps within the instance space be-

tween the Beasley and Cho sets. Unlike the Cho instances, the new instances are

41

more difficult to solve and visually spread across the instance space with the Beasley

set. Additionally, the new instances contain similarity to both existing sources by

containing instances within the two clusters, predominantly the Beasley set.

Figure 7. ISA of new instances on the Beasley and Cho instance space

In particular, the instance space of the Beasley and Cho sets shown in Figure 6

show two clusters separated by their correlation structure: the Beasley set resulting

from an ICI method and the Cho set from an ECI method. The Scherer set is spread

throughout the Beasley set because they also are constructed using an ICI method.

However, their variation in constraint slackness helps fill gaps present in the instance

space. In addition, the ECI method used by Cho (2005) can be integrated into PPIG

to create feasible and difficult MDMKP instances with controlled correlation structure

and constraint tightness.

After performing the ISA for all three sets of test instances, we obtain a projection

matrix shown in (8). Figure 8 depicts the resulting instance space, along with the

theoretically feasible boundary of instances. Similar to Figure 7, the new instances

are spread across the instance space comprising the Beasley set of instances.

42

Figure 8. ISA of Scherer, Beasley, and Cho instance space with theoretical feasible
boundary

 Z1

Z2

 =

0.132 0.364

0.179 0.357

0.406 −0.230

0.498 −0.279

0.239 0.303

0.057 −0.407

−0.044 0.343

−0.452 −0.282

0.430 0.319

0.360 −0.246

T

Constraints KP

Constraints Demand

Max Constraint Tightness KP

Max Obj to Constraint Corr KP

Range Obj to Constraint Corr Demand

Min Within Constraint Corr Demand

Range Within Constraint Corr Demand

Min Across Constraint Corr

Range Across Constraint Corr

Coefficient of Var Weights KP

(8)

Table 3 reports the average wall-clock time of Gurobi to solve the test instances

43

across each source. The average runtime performance of Gurobi is lower for the

Scherer set compared to the Beasley set, but we note that both distributions of

runtimes contain instances which are easy to solve but also require the maximum

runtime to identify a near-optimal solution. A visualization of the instance space

including all three sources is shown in Figure 8. The Scherer instances align within

the Beasley instances. In this instance space configuration, the difficult instances lie in

the lower-right portion of the instance space. The difficult region of the instance space

is characterized by the distribution of meta-features displayed in Figures 34-36 within

A. In general, the generation of more difficult instances relies on higher values of the

max across constraint correlation between the knapsack and demand constraints,

higher values of max within constraint correlation for the demand constraints, and

higher values for the number of demand constraints.

Table 3. Average runtimes (seconds) to identify a within 1% near-optimal solution by
instance source.

Beasley Cho Scherer
252.9 0.07 147.15

To explore the regions of the instance space, we adopt PPIG to control specific

meta-features which dictate the region in which the instances lie. In particular, we

seek to generate instances on the current frontier of instances shown in Figure 8. By

examining the distribution of features for each meta-feature defined in (8), instances

having higher values of max within constraint correlation for the demand constraints,

in addition to higher values of max constraint tightness for knapsack constraints,

will yield instances in the lower-right portion of the instance space, i.e., closer to the

point (5,0). Since PPIG is sampling-based strategy over a distribution of MDMKP

parametric characteristics, the parameters in Algorithm 1 may be modified to target

this region. For example, specifying the quantile for the RHS value selection to force

higher values of max constraint tightness and manipulating the constraint correlation

44

structure of the demand constraints through the ECI method from Iman and Conover

(1982).

Overall, PPIG presents a new class of instances in the instance space with control-

lable meta-features without losing feasibility of the generated instance. The PPIG

approach develops an empirical distribution of resources by sampling from rk-values

to calculate the final RHS values. We utilized set percentiles for both types of con-

straints, which ensures feasibility across the current set of input parameters. Future

work includes adapting PPIG for worst-case of both types of constraints, and en-

suring feasibility by relaxing the constraint tightness across each dimension. PPIG

allows for a target region in the instance space by controlling for meta-features di-

rectly through the input parameters. PPIG is a flexible instance generation method

for a variety of optimization problems with feasibility assisted by building instance

constraints relative to primal feasible instances.

2.5 Conclusion

This research demonstrates a methodology for characterizing the current collec-

tion of instances for the MDMKP, contributes new sets of test instances to fill the

instance space, and provides a method to generate feasible instances of the MDMKP

across any range of meta-features. The conducted ISA leveraged knowledge from the

0-1 KP and MKP to find meaningful features to characterize the instances, as well

as to examine current instance generation methods and identify potential weaknesses

in approaches. The identified weaknesses include the constraint tightness varying

across dimensions or the correlation structure, both of which were varied in a flexi-

ble approach used in MKP construction from previous work (Cho, 2005). However,

when constructing an MDMKP instance from an MKP instance, feasibility becomes

an issue and is addressed through PPIG. The 810 original instances were examined

45

in a two-dimensional visualization of the instance space and were augmented with

additional instances. The resulting instance space identified the importance of vary-

ing tightness across constraint dimensions in addition to specifying the correlation

structure through an explicit correlation induction technique.

In addition to demonstrating the impact of a different instance generation method

for the MDMKP on the instance space, this work discusses the shortcomings of in-

stance generation methods for problems with nontrivial feasible regions. The MDMKP

is unique in that it contains competing constraints across multiple dimensions. We

find there a number of trade-offs that occur in instance generation methods to pro-

duce feasible instances. Approaches which guarantee feasible solutions, such as the

generation method used by Cappanera and Trubian (2005), sacrifice completely filling

gaps in the instance space, whereas the methods used in this work do not guarantee

feasibility but help to cover unexplored regions of the instance space. The method

employed by Cho (2005) for the MKP is difficult to generalize for the MDMKP and

maintain feasible instances. In contrast, the instance generation method presented

in this work allows controllable characteristics in the MDMKP without sacrificing

feasibility.

The instances from PPIG demonstrate an instance generation method which em-

phasizes feasibility by constructing primal feasible instances and building the param-

eters from this foundation. The approach is flexible to be used in further work, as an

even wider array of instances of the MDMKP but also for other KP variants. Inte-

grating the generator into an ISA framework allows for objective measures of diversity

in newly generated instances, as well as a measure of difficulty.

The work presented here highlights the important of ISA in instance generation

methodologies. ISA is used to validate the novelty of an instance generation method

by examining where it lies in the current collection of instances in the instance space.

46

While the MDMKP is the problem of interest, the application to any KP variant

is straightforward. For example, the correlation structure, constraint tightness, and

coefficient distribution are measurable for the 0-1 KP, the MKP, and the multiple

choice knapsack problem (MCKP).

To directly extend this work, it is of merit to examine in detail the tailorability of

the proposed PPIG method’s sampling of instance parameter distributions to target

specific subregions for instance generation rather than seeking a broad distribution

of instance characteristics. For example, there may be interest in generating feasible

instances within a certain subregion within Figure 8. Additionally, future work may

incorporate the similarities and differences of the instance space for optimization

problems belonging to the same class of problem, but with modified formulations.

Also worth examining is the extent to which PPIG can be leveraged to generate

feasible LP test problems, in comparison to existing methods.

47

III. Instance Based Configuration for Metaheuristic
Selection

3.1 Introduction

Newer optimization solution methods usually claim to produce either better qual-

ity solutions then existing methods, or equal quality solutions more efficiently yet

both often use less than definitive testing methods. Given the testing is the basis for

verifying the contribution, computational testing is “critical” to the paper per the

guidelines introduced by Greenberg (1990). Whether through theoretical analysis or

empirical testing, the quality and efficiency of a solution approach are two measures of

the effectiveness of a solution approach in optimization. The works by Hooker (1994)

and Hooker (1995) advocate for a rigorous treatment in empirical testing beyond

theoretical worst-case or average-case analysis urging the optimization community to

push the envelope of empirical testing by not only showing How does the solution

procedure perform? but also answering Why does the approach perform well?

The focus of most research papers is competitive testing against a fixed set of

benchmarks, rather than focusing on controlled experimentation to uncover empirical

and theoretical insights. According to the No-Free-Lunch (NFL) Theorem by Wolpert

and Macready (1997), it is impossible for any one algorithm to outperform all other

algorithms when averaged over all possible optimization problems. Any “state-of-the-

art” approach to a stated problem will perform well on some fixed set of instances,

without any indication of the success being generated from the solution approach, or

random chance.

A better use of research is through rigorous testing under a variety of empirical

circumstances and relating findings to the original intention of research: To increase

the capacity of knowledge over a given topic. In optimization, many advancements

48

are made in solution methodologies with promises of higher quality solutions with

less time required to find these solutions. However these advancements often fail

to mention conditions where the proposed methodology performs poorly and is not

expected to succeed. In this work, we provide a methodology to demonstrate where

those conditions occur through the use of an expanded set of test instances.

A new approach called Instance Space Analysis (ISA) (Smith-Miles, 2019) helps

describe the spectrum of problem conditions where solution methods have strengths

and weaknesses. ISA provides a methodology to evaluate the current collection of

test instances, compare algorithm performance across this collection, and summarize

this information through low-dimensional visualizations. ISA emanates from a series

of works beginning with Smith-Miles and Lopes (2012) measuring instance difficulty

across a variety of well-known optimization problems. Subsequent work by Smith-

Miles et al. (2014) develops the idea of an instance space and examining algorithmic

strengths and weaknesses across the instance space. The instance space also presents

gaps where the current collection of instances fail to provide test instances, resulting

in Smith-Miles and Bowly (2015) proposing a method to fill the gaps in the instances

space with an instance generation method. After these three main pieces constructing

the visualization methodology is improved with a novel projection algorithm (Muñoz

et al., 2018). The final methodology supporting the online tool MATILDA (Smith-

Miles, 2019) is summarized in a recent tutorial paper (Smith-Miles and Muñoz, 2021).

ISA is applicable to many settings including optimization, machine learning (Muñoz

et al., 2018, 2021), anomaly detection (Kandanaarachchi et al., 2020), and time series

forecasting (Kang et al., 2017). Optimization is the most prevalent, with the recent

work by Smith-Miles et al. (2021) revisiting Where are the hard knapsack problems?

originally questioned by Pisinger (2005). Further work includes ISA applied to course

timetabling (De Coster et al., 2022), max flow (Alipour et al., 2023), and black-box

49

optimization (Muñoz and Smith-Miles, 2020a).

To characterize the structure of a given problem instance, ISA utilizes meta-

features which summarize the relationship between defined problem parameters in

an specific formulation. Examples of meta-features are provided in the methods set

forth by Smith-Miles and Lopes (2012) and are divided into two groups: Problem

independent features and problem specific features.

Problem independent features are mostly borrowed from fitness landscape anal-

ysis. The fitness landscape is defined by a set of solutions, a fitness function, and

a neighborhood based on the set of solutions. From this fitness landscape, multiple

features such as the fitness distance correlation, the distribution of local minima,

and the ruggedness of a solution generated by a random walk process. In general, fit-

ness landscape analysis has not sufficiently helped characterize optimization problems

(Bierwirth et al., 2004).

In contrast to problem independent features, problem specific features help mea-

sure instance difficulty and characterize the instance space (Smith-Miles et al., 2014).

For problems based on graphs, where a graph G(V , E) is defined by a set of N vertices

V connected by a set of edges E , there are measures defined by graph theory. For

knapsack problems (KP), with the goal of maximizing the value of items put into a

constrained knapsack, there are relationships defined between the value and weight

of an item (Cho et al., 2008; Hall and Posner, 2007; Smith-Miles et al., 2021).

In this work, the problem of interest is the 0-1 multidemand, multidimensional

knapsack problem (MDMKP). The MDMKP is an extension of the 0-1 multidimen-

sional knapsack problem (MKP), where the objective is to fill a knapsack with items

which contain positive and negative contributions to the overall objective. Each item

contains a corresponding weight across each dimension; the total sum of each dimen-

sion cannot exceed the stated capacity for each dimension. In contrast to the MKP,

50

there are an added set of demands, or covering constraints, which must be satisfied

across multiple dimensions. For example, the MDMKP may model the limitations

and requirements modeled in portfolio optimization. Specifically the model may in-

clude demands of a portfolio requiring levels of environmental, social and governance

(ESG) scores while limiting the percentage of total investments in a certain sector.

This novel research examines MDMKP meta-heuristic performance under the lens

of ISA, specifically examining the relationship between problem specific meta-features

and select metaheuristic performance. The available problem set is expanded through

the use of a newly developed instance generation technique that produces feasible

MDMKP instances with controllable problem characteristics and varying degrees of

difficulty. The generated instances are then combined with currently available in-

stances established in the literature to constitute the new instance space explored. A

machine learning classifier is used to examine the “algorithm footprints”, the areas of

the instance space with better solution procedure performance, which is mapped to

the exploited structure in the problem. A classification tree model provides an inter-

pretive link between problem structure and recommended metaheuristic selection. A

variety of instances are visualized in the instance space with their respective footprints

to demonstrate the effectiveness of the classification tree. The results demonstrate

the utility of the ISA framework for rigorous empirical testing and provide areas of

the instance space where current solution methods need improvement.

The remainder of this work is structured as follows. Section 3.2 outlines each

component defined in ISA, beginning with the problem space and ending with the

instance space visualization. Section 3.3 describes the metaheuristic performance

across the instance space and the strengths and weaknesses of each for different prob-

lem configurations. Section 3.4 provides the results and analysis of machine learning

classification model for the MDMKP Algorithm Selection Problem (ASP). Section 3.5

51

discusses the results and summarizes the contributions of this research.

3.2 Instance Space Analysis

This section examines the component spaces of ISA for the MDMKP starting with

an overview of the ASP, a breakdown of ISA into its respective component spaces,

and an introduction to the problem space, the subset of available test instances, the

algorithm space, the performance space, and the feature space. These five areas

are used to construct the instance space, which gives a two-dimensional plane to

visualize the current collection of instances, positioned by their instance structure

and algorithmic performance.

3.2.1 Algorithm Selection Problem

ISA originates from the ASP, defined in the seminal work by Rice (1976) for

differential equations, but adopted for an optimization problem framework. The ASP

approach is summarized in Figure 9, where the section encapsulated by the dotted

line is Rice’s work extended by Smith-Miles et al. (2014).

The ISA framework depicted in Figure 9 divides the ASP into six component

spaces. The initial requirement for ISA is some problem of interest which is defined by

the problem space, P , and all possible feasible instances of the problem. In this work,

the MDMKP is the problem of interest and the subset of instances, I, are the test

instances used in empirical testing. The feature space, F , encapsulates the structure

of the MDMKP using meta-features to quantify the relationship of performance and

problem configuration. The algorithm space, A, constitutes the algorithms found in

the literature for the MDMKP, of which a representative subset are used in this work.

The solution procedures are measured in the performance space, P , where yα,x is the

performance metric of algorithm α ∈ A for instance x ∈ I. The result of defining

52

each component space allows for a dimension reduction, g(·), to visualize the instance

space, the algorithm footprints, φ(yα,I), to see trends of algorithm performance, and

the objective of the ASP, α∗ = S(g(fx, yα,x)), to find the best algorithm for a given

instance.

x ∈ P
Problem space

x ∈ I
Problem subset

fx ∈ F
Feature space

g(fx, yα,x) ∈ R2

Instance space

Footprints in
instance space

yα,x ∈ Y
Performance space

α ∈ A
Algorithm space

Select or generate a
subset I ⊂ P

Create feature vector
f

Dimension reduction
g(·)

α∗ = S(fx)

Select α∗ to
maximize ||y|| Estimate yα,x by

applying α to x

Define algorithm
footprints φ(yα,I)

Predict algorithm performance
for x ∈ P

Learn selection mapping
from instance space

α∗ = S(g(fx, yα,x))

Figure 9. Summary of Algorithm Selection Problem (Rice, 1976) shown in dotted
box, extended upon by Smith-Miles et al. (2014)

3.2.2 Problem Space

The MDMKP appears to have been originally defined by Cappanera and Tru-

bian (2005) and emerged from previous work in discrete facility location problems

(Cappanera et al., 2003). The MDMKP is formulated as:

max
n∑

j=1

cjxj (9)

s.t.
n∑

j=1

wijxj ≤ bi, for i = 1, . . . ,m, (10)

53

n∑
j=1

wijxj ≥ bi, for i = m+ 1, . . . ,m+ q, (11)

xj ∈ {0, 1}, for j = 1, . . . , n, (12)

where xj is a binary decision variable to determine whether to include item j in the

knapsack. Additionally, the right-hand-side capacity/requirement values are positive,

i.e., bi > 0 for i = 1, . . . ,m + q, and the weights are assumed to be nonnegative,

i.e., wij ≥ 0 for i = 1, . . . ,m + q, j = 1, . . . , n. A well-stated MDMKP instance

results in the absence of redundant constraints and a feasible solution without fixing

the decision variable values to zero. The conditions are stated as:
∑n

i=1 wij > bi

for i = 1, . . . ,m + q; maxj{wij} ≤ bi for i = 1, . . . ,m; and minj{wij} ≤ bi for

i = m+1, . . . ,m+ q. Each of the m constraints in (10) are referred to as a knapsack

constraint (K) and each of the q constraints in (11) are a demand constraint (D).

The MDMKP is faintly similar to a variety of KP variants. By removing the set of

demand constraints and forcing the objective function coefficients to be positive, the

multidimensional knapsack problem (MKP) becomes a special case of the MDMKP.

An expansion of the MDMKP is the multidemand multiple-choice multidimensional

knapsack problem (MDMMKP) defined by Lamine et al. (2012), where the decision

variables become xij: the selection of exactly one item j out of each class of i items.

The methodology presented by Lu and Vasko (2020) demonstrates the effectiveness

of converting an MDMKP instance to an MDMMKP instance when using CPLEX to

verify an optimal solution.

3.2.3 Subset of Instances

The theoretical component space of all possible MDMKP instances constitutes the

problem space, while the empirical collection of test instances is the problem subset

of interest. In an ideal statistical setting, the set of test instances should adequately

54

represent the problem space. The original collection of test instances, as set forth

by Cappanera and Trubian (2005), begin by establishing the left-hand-side (LHS)

constraint coefficients for the knapsack and demand constraints wij drawn uniformly

from the range [0,1000]. The problem right-hand-side (RHS) coefficients bi are deter-

mined by summing the LHS values across each dimension i and multiplying that sum

by a “tightness ratio” α. Specifically, bi = α
∑n

j=1 wij where α ∈ {0.25, 0.5, 0.75}.

The remaining portion of an MDMKP formulation is the objective function coef-

ficients. The instance generation method set forth by Cappanera and Trubian (2005)

define two types of cost coefficients: positive cost coefficients or mixed cost coeffi-

cients. Specifically, the positive cost coefficients are defined as

cj =
m∑
i=1

aij
m
−

m+q∑
i=m+1

aij
q

for j = 1, . . . , n,

which are shifted by a ∆-value to enforce the positive case as

cj = cj +∆+ 500uj.

The shift value ∆ is defined as

∆ =

1 + |minj{cj}| if minj{cj} < 0

0 otherwise,

and the coefficient is scaled by uj, a real number drawn uniformly from the range

[0,1]. The mixed cost coefficients are defined as

cj =
m∑
i=1

aij
m
−

m+q∑
i=m+1

aij
q

+ 500uj for j = 1, . . . , n,

where uj is a real number drawn uniformly from the range [0,1]. In addition, the set

55

of coefficients are scaled such that there are nq/(m+ q) negative coefficients to offset

the difference in the number of knapsack and demand constraints.

The MDMKP instance generation method by Cappanera and Trubian (2005) mim-

ics the MKP instance generation method by Chu and Beasley (1998). Cappanera and

Trubian (2005) create six problems from existing MKP instances (Chu and Beasley,

1998) by modifying the number of demand constraints and the type of cost coefficient.

The six problems are broken down from each instance as the positive case with q = 1,

q = m/2, or q = m or mixed case with q = 1, q = m/2, or q = m. Cappanera and

Trubian (2005) use the first half of the instances in Chu and Beasley’s test set to

create six additional MDMKP instances, for a total of 810 instances available in the

OR-Library (Beasley, 1990). These test instances are referred to as the Beasley set

of instances.

Previous research conducted by Reilly (2009) summarizes the shortcomings of

current instance generation methods for the KP by showing most generation meth-

ods only cover a small range of correlation coefficient values. Reilly (2009) defines

two types of instance generation methods: implicit correlation induction (ICI), and

explicit correlation induction (ECI). ICI methods rely on an implied correlation struc-

ture through the definitions of the model parameters, while ECI methods articulate

the correlation structure before crafting the model parameters. MKP instances from

Cho et al. (2008) utilize an ECI method based on the generation method defined by

Iman and Conover (1982) to create test instances that show the ineffectiveness of var-

ious well known, competitive heuristics across the full range of correlation structures.

The currently available MDMKP test instances do not cover an adequate range of

correlation structures, something this work mitigates by expanding the number of

test instances as described below.

Unlike the KP or the MKP, the MDMKP is not trivially feasible meaning gen-

56

erating feasible instances can be difficult. To address the issue of infeasible instance

generation methods, the newly developed Primal Problem Instance Generator (PPIG)

from the work by Scherer et al. (2023b) is used to generate MDMKP instances which

are unique and feasible. PPIG is a flexible instance generation approach which con-

structs sampling distributions of RHS values from a fixed LHS weight matrix. In this

work, the distributions are constructed from different initial solutions of MDMKP

instances which follow a Bernoulli distribution with a uniformly drawn probability

of an item being included in the solution p. The RHS values for the knapsack and

demand constraints are selected from different percentiles of the sampling distribu-

tion from each constraint and constraint type. The sampling of RHS values from a

distribution allows for variation in the tightness ratio of each constraint across all

dimensions. In this work, we utilize the 50th percentile for the knapsack constraints

and the 25th percentile for the demand constraints. The LHS follows the definition

from Cappanera and Trubian (2005) and is drawn uniformly from the range [0,1000].

The 45 MDMKP instances generated are referred to as the Scherer set of instances.

PPIG is a flexible instance generation method that can be used to directly ma-

nipulate meta-features in the construction of MDMKP test instances. In this work,

we use the ECI method by Hill et al. (2012) in conjunction with PPIG to generate

MDMKP instances with explicit correlation structure mapped between the objective

function coefficients and the LHS values for the knapsack and demand constraints.

The parameters for PPIG remain the same for the RHS sampling, resulting in in-

stances that cover the full range of correlation coefficients while also varying the

tightness ratio across each dimension. These 135 MDMKP instances are referred to

as the Scherer Correlated set of instances.

57

3.2.4 Algorithm Space

The algorithm space consists of any solution procedure used to provide solutions

to the MDMKP. However, the current MDMKP literature is focused just on meta-

heuristic methods. Metaheuristics are heuristic “solution methods that orchestrate

an interaction between local improvement procedures and higher level strategies to

create a process capable of escaping local optima and performing a robust search of a

solution space” (Glover and Kochenberger, 2006). The two classes of metaheuristics

used to find solutions for the MDMKP in this work are tabu search methods and

scatter search methods, resulting in four metaheuristics implemented in the testing.

The tabu search procedure used, referred to as the Local Search (LS) method,

is from the methods set forth by Cappanera and Trubian (2005) and features two

overarching phases: the outer phase and the inner phase. The outer phase performs a

search for a diverse set of feasible solutions while the innder phase uses the collection of

feasible instances and intensifies the search procedure to find improving solutions. The

outer phase borrows the idea of strategic oscillation from Glover and Kochenberger

(1996) in the MKP. Strategic oscillation focuses on finding the boundary between

feasible and infeasible solution, and relaxing that boundary. The search begins with

a constructive phase that continues until the feasibility boundary is crossed and the

solution is stored. The variables changed are stored as tabu in the tabu memory.

The crossing of the boundary is identified as a critical event and changes the phase

of the search from the constructive phase to the destructive phase. The depth of the

search into the feasible or infeasible region is controlled by the span parameter. The

stopping criteria for the outer phase is as any of a specified length of time, a number

of repetitions, or enough feasible solutions have been identified to improve upon in

the second phase.

The inner phase of the tabu search is a local search procedure applied to the stored

58

collection of feasible solutions which examines two neighborhoods of solutions. The

first neighborhood N1 is made up of all solutions generated through three moves. The

first move is changing a variable set to zero to one, the second move is changing a

variable set to one to zero, and the third is to swap the values between a variable set to

zero and a variable set to one. The second neighborhood N2 is made up of solutions

generated by a double swap move. The double swap move is taking two variables

set to zero and two variables set to one and interchanging their values. In the first

neighborhood search, a move is considered tabu if the variable is in tabu memory,

while the second neighborhood search requires all four variables to non-tabu.

A simpler approach proposed by Arntzen et al. (2006) includes a tabu search

method, referred to as the Adaptive Memory Search (AMS) method, for the MDMKP

which focuses on an adaptive move evaluation to guide the search process. The search

consists of a simple neighborhood of flips by changing a variable set to zero to one

or a variable set to one to zero. The move is evaluated through the change in the

objective function value and a weighted change in the infeasibility of the knapsack

and/or demand constraints. The search is less sophisticated than the previous tabu

search method (Cappanera and Trubian, 2005) but requires more parameter tuning

to obtain high quality solutions.

The adaptive weights are updated depending on the current feasibility condition

of the search. The conditions are divided into four disjoint regions: feasible solutions,

knapsack feasible but demand infeasible solutions, knapsack infeasible but demand

feasible solutions, and doubly infeasible solutions. The move is selected in a greedy

fashion as long as it is not tabu or an aspiration criteria based on a new best feasi-

ble solution is met. The tabu memory includes a dynamic tabu tenure parameter

randomly selected from a fixed, pre-defined, interval. The search incorporates diver-

sification by using random solution restarts after a fixed set of processing time.

59

The Scatter Search (SS) method proposed by Hvattum and Løkketangen (2007) is

the only metaheuristic examined not based on tabu search. In contrast to tabu search,

which is a single-solution-based metaheuristic, scatter search is population-based and

examines multiple solutions using an evolutionary process to recombine solutions from

a reference set to build other solutions (Laguna and Mart́ı, 2003). The scatter search

implementation set forth by Hvattum and Løkketangen (2007) uses the five common

SS components of: the diversification generation method, the improvement method,

the reference set update method, the subset generation method, and the solution

combination method. In the improvement method, the authors utilize the objective

function value and the sum of the violations of each constraint to measure the quality

of solutions. The solution are improved upon to create a single flip neighborhood by

changing a variable set to zero to one or a variable set to one to zero. In the subset

generation method, the authors produce five trial solutions for each pair of solutions

used for input in the improvement method. The authors modify the neighborhood

structure by allowing more flips to occur in the search process.

A more recent solution method, referred to as the Two-Stage Tabu Search (TSTS)

method (Lai et al., 2019), utilizes two stages of tabu search. The two stages use meth-

ods from previous attempts in the literature in addition to a unique hash vector for

tabu memory of solutions. The first stage is similar to the outer phase method defined

by Cappanera and Trubian (2005), where the focus is on finding feasible solutions

through exploration of two simple neighborhood structures. The first neighborhood

consists of all non-tabu solutions available by changing a variable set to zero to one

or a variable set to one to zero. The second neighborhood consists of all non-tabu

solutions available by swapping a variable set to zero with a variable set to one.

These neighborhoods of solutions are evaluated through a penalized evaluation func-

tion similar to the improvement method introduced by Hvattum and Løkketangen

60

(2007). The search space explored by the first stage contains both feasible and in-

feasible solutions but both indicate promising regions to improve upon in the second

stage.

The second stage aims to improve upon the collection of feasible and infeasible

solutions from the first stage. The main difference between the first stage is the neigh-

borhood structure, which focuses con a constrained swap neighborhood. Specifically,

the neighborhood consists of all non-tabu solutions available by swapping a variable

set to zero with a variable set to one such that their objective function value is better

than the current best objective function value. The best objective function value

is updated when a higher value is obtained from a feasible MDMKP solution. The

search continues until a maximum time limit is reached.

This work adopts the parameter settings recommended in the relevant publica-

tions for all metaheuristics employed. For instance, the weights of the penalization

term for change in infeasibility of the knapsack and/or demand constraints require

careful tuning, and we use the recommended tabu tenure settings for each instance.

In the scatter search method proposed by Hvattum and Løkketangen (2007), differ-

ent improvement techniques are used to expand the search space, but we adopt the

simplest criterion of steepest ascent local search using single-flip moves only. Another

crucial aspect that affects the quality of the solutions obtained is the termination cri-

teria for each metaheuristic. Following the methods set forth by Lai et al. (2019), we

set the maximum runtime for each metaheuristic proportional to the number of deci-

sion variables in the test instance, and the recommended number of iterations from

each publication is also used. The focus in this work is to gain insight into solution

procedure performance thus the lack of focus on the optimal tuning of metaheuristic

parameters to the test problem set.

61

3.2.5 Performance Space

The performance space contains measures to identify solution procedure effec-

tiveness on a given test instance. In heuristic methods common metrics include the

quality of the solutions found and the best feasible objective function value found.

The difficulty of the MDMKP is clearly demonstrated when seeking an optimal solu-

tion using exact solution procedures such as CPLEX (Song et al., 2022) and Gurobi.

In some test instances, a feasible solution is not identified within several hours of

processing time in CPLEX or Gurobi. We utilize an Intel© CoreTM i7-11700 CPU at

2.5GHz with 32 GB RAM for each of our tests.

The best objective function value of a feasible solution obtained by a metaheuristic

in saved as the performance metric. Due to the inability to find feasible solutions with

state-of-the-art commercial solvers, we remove instances from our problem subset that

were not deemed feasible by Gurobi within 1 hour of processing time. By introducing

this criteria, the metaheuristics which do not identify a feasible solution in empirical

testing are fairly compared using instances with known feasible solutions. This criteria

removes 4 test instances from the Beasley set while none of test instances from the

Scherer and Scherer Correlated sets were infeasible. In total, 986 test instances are

retained for empirical testing.

3.2.6 Feature Space

Meta-features are quantitative measures that capture different aspects of an op-

timization problem beyond its objective function parameters and constraint param-

eters. Meta-features are a set of characteristics that can be extracted from an opti-

mization problem to provide useful information for algorithm selection, performance

prediction, and understanding problem properties. This work presents a comprehen-

sive study of various meta-features and how they can be used to characterize an opti-

62

mization problem. The examined meta-features are used to build a two-dimensional

visualization of the instance space to see where the current collection of test instances

lie in terms of their problem structure. Their physical location in the instance space

is then mapped to the meta-feature values it contains.

Previous literature on features to characterize optimization problems includes the

work by Smith-Miles and Lopes (2012). The authors distinguish two types of problem

features: problem independent features and problem dependent features. Problem

independent features are measures of the objective function parameters and constraint

parameters to summarize their distribution of values or by borrowing methods from

landscape analysis (Reeves, 1999). For example, the problem dimensionality can be

determined by analyzing the number of input variables or dimensions of the problem.

Problem dependent features allow the use of specific measures pertaining to a problem,

such as the various measures seen in the literature for KP variants. Smith-Miles

et al. (2021) include an in depth description of the feature space for the 0-1 KP in

addition to the work by Hall and Posner (2007). Their meta-features are measures

exploited in heuristic methods for the 0-1 KP such as the efficiency of an item defined

as: ei = pi/wi. Work by Cho et al. (2008) on the MKP focused on examining

the correlation structure between the objective function parameters and constraint

parameters.

Previous studies on the 0-1 KP discovered that the range of correlation coefficients

explored with some test sets was limited to a narrow range of 0.97 to 1 (Reilly,

2009), even though the description of those test problems implied a much more robust

range. The impact of the narrow range of problems emanating from ICI generation

methods went largely unnoticed until compared to an ECI method. Figures 10 and 11

display the correlations between the objective function and constraint parameters for

a subset of instances selected from the ICI method used to generate the Beasley set

63

of instances, contrasted with the ECI method used to produce the Scherer Correlated

set of instances. Notably, the correlation values for both the knapsack and demand

constraints exhibit significant differences in range, except when q = 1, leading to

instances with more prominent correlation values than when q = 30. This is an

important problem feature that has not been examined in past MDMKP work, but

has been a focus in past MKP work (Hill et al., 2012) and past characterization of

MKP-type problems (Hill et al., 2011).

Figure 10. Distribution of correlation coefficients for knapsack constraints

This work adopts meta-features previously used in the literature for the 0-1 KP

and the MKP. The meta-features are augmented for the MDMKP by using separate

measures for the knapsack and demand constraints in addition to using summary

statistics to capture the multiple i constraint dimensions. The meta-features are

described in Table 4 for a total of 29 meta-features to choose from to construct the

instance space. ISA uses Preparation for Learning of Instance Meta-data (PRELIM)

to pass the meta-features through a Box-Cox variance stabilization transformation

followed by standardizing the meta-features to a standard normal distribution with a

64

Figure 11. Distribution of correlation coefficients for demand constraints

z-transformation. From this collection of transformed meta-features, the Selection of

Instance Features to Explain Difficulty (SIFTED) is required to discover the relevant

meta-features and reduce the quantity of meta-features to characterize the instance

space.

3.2.7 Instance Space

SIFTED reduces the number of meta-features from 29 to 10. The 10 meta-features

portray the instance space in a ten-dimensional space. To visualize the instance space,

Projecting Instances with Linearly Observable Trends (PILOT) occurs to reduce the

dimensionality of the instance space to two-dimensions. The projection in PILOT

is based on a convex global optimization problem with an objective to preserve the

topology of the instance space (Muñoz et al., 2018). PILOT measures topological

preservation by the correlation between the distances in the ten-dimensional feature

space and the distances in the two-dimensional instance space. The resulting projec-

tion to the two-dimensional instance space (Z1, Z2) matrix is shown in (13).

65

Table 4. Meta-features for the MDMKP

Feature Name Description - Constraint Type - Statistic
Decision Vars Number of decision variables.
Constraints Number of constraints - K & D.
Constraint
Tightness bi∑

j wij
,∀i - Both - Min, max, and mean.

Prop Part
Dominance Proportion of items pairs i, j where pi ≥ pj and

wik ≤ wjk for any k knapsack constraint, (pi ≥ pj
and wik ≥ wjk for any k demand constraint)

Obj to Constraint
Correlation Pearson correlation coefficient between objective

function coefs and constraint coefs for dimension
k - K & D - Min, max, and range.

Within Constraint
Correlation Pearson correlation coefficient within same class of

constraint coefficients for dimension k - K & D -
Min, max, and range.

Across Constraint
Correlation Pearson correlation coefficient across classes of con-

straint coefficients for dimension k - K & D - Min,
max, and range.

Coefficient of Var
Weights Coefficient of variation of weight coefficients across

k dimensions - K & D.
Coefficient of Var
Profits Coefficient of variation of profit coefficients.

66

 Z1

Z2

 =

−0.2742 0.0232

−0.1321 0.2524

−0.2695 −0.3597

0.4183 −0.2882

0.0334 0.509

0.2937 −0.2537

0.1802 −0.5974

−0.115 −0.359

0.1624 0.2651

0.221 −0.379

T

Decision Vars

Average Constraint Tightness - D

Prop Part Dominance - K

Max Obj to Constraint Corr - K

Min Obj to Constraint Corr - K

Range Obj to Constraint Corr - D

Range Within Constraint Corr - K

Max Within Constraint Corr - D

Min Within Constraint Corr - D

Range Across Constraint Corr

(13)

The collection of problem instances and the projection from (13) yields the in-

stance space depicted in Figure 12. Analysis of the distribution of test instance

sources indicates that the Beasley and Scherer sets of instances share a similar re-

gion, while the 135 Scherer Correlated set of instances are mostly clustered towards

the lower-right region of the instance space. The collective result is better coverage of

the instance space and thus a more comprehensive empirical study, which as discussed

below, yields remarkable insights.

Figure 13 displays the distribution of meta-features across the instance space. The

cluster observed in the lower-right region of the instance space is mainly attributed

to the correlation structure among the instances. Notably, the other meta-features,

such as the number of demand constraints and decision variables, follow a left-to-right

trend of increasing magnitude, whereas the proportion of partial dominant items for

demand constraints exhibits higher values on the left and lower values on the right.

This visualization provides valuable insights into the underlying relationship between

67

Figure 12. Instance space for the MDMKP with projection defined by (13)

problem structure and solution procedure performance.

68

Figure 13. Distribution of meta-features across instance space

69

3.3 Metaheuristic Selection Problem

The ASP, first introduced by Rice (1976) and extended by Smith-Miles et al.

(2014), establishes a mapping between the feature space and the algorithm perfor-

mance space. This goal involves predicting the best-performing algorithm for a given

test instance, which in the current setting, is focused on metaheuristics. The full

suite of available test instances, including those generated with an explicit corre-

lation structure, are used to examine which metaheuristics to use in specific areas

of the instance space. The defined meta-features are used as inputs to a machine

learning classification model. The model then assigns labels to instances with the

recommended metaheuristic, and the results are visualized in the two-dimensional

instance space.

Figure 14 displays the predicted best metaheuristic in the instance space using the

support vector machine (SVM) classifier from the ISA toolbox (Muñoz and Smith-

Miles, 2020b). The lower-right region of the instance space, consisting mostly of

instances from the Scherer Correlated set, indicates poor performance among all ex-

amined metaheuristics. Past work has found correlation structure in optimization

problems significantly affects algorithm performance, and this work demonstrates the

same holds for the MDMKP. Conversely, the upper-left region, mainly composed of

instances from the Beasley set, indicates best performance with the Local Search

method. Additionally, a small subset of instances, sourced from all three sets, is

predicted to achieve the best performance with the Two-Stage Tabu Search method.

Figures 15-18 provide specific graphical insights into the performance of the suite

of metaheuristics considered. A careful examination of the algorithm footprints in

Figures 15-18 confirms that the lower-right region of the instance space lacks any

exceptionally performing solution procedure. Specifically, the Scherer Correlated set

of instances do not exhibit a prominent method in the metaheuristic portfolio for

70

−8

−4

0

4

−4 −2 0 2 4 6
Z1

Z
2

Predicted Metaheuristic

LS

None

SS

TSTS

Figure 14. SVM predicted best metaheuristic for the MDMKP

finding high-quality solutions for the MDMKP. Since correlation structure within

an optimization problem is a reasonable expectation, this finding underscores the

significance of using an adequate source of test instances. The better test problem

set used in this work allows further enhancement of the ASP with a classification

model.

There are additional insights gained by analyzing the distribution of meta-features

in Figure 13 and the footprints in Figures 15-18. Clearly, problem structure matters.

There is a lack of effective metaheuristics for problems involving the ECI method,

as evidenced by the absence of corresponding footprints in the lower-right region of

the instance space. This is the region dominated by meta-features associated with

correlation structure, spanning the entire range of correlation coefficients.

The footprints of the LS and TSTS method cover the largest area of the instance

space, indicating their robustness to a variety of instance configurations outside of

the correlation structure. Conversely, the footprints of the AMS and SS method,

which are the weakest performing metaheuristics, cover only a small portion of the

71

Figure 15. Local Search’s footprints across the instance space

Figure 16. Adaptive Memory Search’s footprints across the instance space

72

Figure 17. Scatter Search’s footprints across the instance space

Figure 18. Two-Stage Tabu Search’s footprints across the instance space

73

instance space. However, the SS method performs relatively well in instances with a

higher proportion of partially dominated items for the demand constraints. Overall,

the combination of insights from the distribution of meta-features and the footprints

provides valuable information for understanding the performance of different meta-

heuristics in the context of the MDMKP.

One limitation of using the SVM classifier is the lack of inferential methods (James

et al., 2013). To address this limitation, previous research has focused on elucidating

the decision-making process of machine learning models (Rudin, 2019). This study

overcomes this challenge by utilizing a decision tree model due to its flexibility and

interpretability in the decision-making process. The decision tree model is constructed

in an optimal manner, rather than the typical greedy approach, to ensure a more

robust and reliable interpretation of the model’s decisions. The decision tree model

is also forced to be sparse, therefore creating a smaller tree which prevents overfitting

and makes the model easier to visualize.

Decision trees are popular machine learning models because of their simplicity and

effectiveness. While their structure is simple, constructing a decision tree to represent

data is NP-hard (Laurent and Rivest, 1976). Originally decision trees are built using

greedy heuristic methods which iteratively proceed in a top-down manner from the

tree with local objective functions (Breiman et al., 1984). With recent improvements

in computational power, optimal decision trees have become within practical reach

with better generalization on unseen data than heuristic methods (Bertsimas and

Dunn, 2017).

The Generalized and Scalable Optimal Sparse Decision Trees (GOSDT) as pro-

posed in the original work by Hu et al. (2019), further refined in the subsequent study

by Lin et al. (2020), and computationally accelerated by McTavish et al. (2022) is

used in this work. GOSDT employs a specialized branch and bound method to effi-

74

ciently find the optimal sparse decision tree, mitigating the combinatorial explosion of

possible trees. This is achieved through analytical bounds and intermediary storage

of prior paths explored, eliminating the need for recomputation of bounds (Hu et al.,

2019). The loss function is based on misclassification error. To enforce sparsity, the

loss function is regularized by the number of leaves in the tree scaled by a regular-

ization term λ. The task is multiclass classification, where the decision tree predicts

the best metaheuristic based on the 10 meta-features used in the instance space.

A training data set consisting of the majority of instances (80%), with a smaller

subset (20%) reserved for testing, is used. Additionally, 25% of each training set was

further partitioned for validation purposes. Comparing these results to the tuned

SVM classifier demonstrates the effectiveness of optimal decision trees by examining

a greedy decision tree. The performance and generalization capability of all three

methods were compared based on their accuracy on the testing split of instances in

the meta-data.

3.4 Results

Figure 19 displays the decision tree resulting from GOSDT, using the best hyper-

parameter settings found: λ = 0.01 and a depth budget of 5 nodes. Although setting

λ = 0.001 results in a slight improvement in training performance, the corresponding

optimal decision tree is not sparse, with 14 leaves. The decision tree shown in Fig-

ure 19 has only 8 leaves. The lack of sparsity present in larger decision trees hinders

the interpretability of the machine learning model, therefore the sparse decision tree

is preferred.

The optimal sparse decision tree model for the ASP is used to evaluate the subset

of test instances and their corresponding recommended metaheuristic. For each test

instance, only 6 meta-feature values are required for the model to make a reliable

75

Avg Tightness - D ≤ 0.625

Range Obj to Con Corr - D ≤ 0.035

Max Within Corr - D ≤ 0.07

Range Across Corr ≤ 0.54

TSTS

F

LS

T

F

SS

T

F

SS

T

F

Min Obj to Con Corr - D ≤ −0.156

DVs ≤ 225

Max Within Corr - D≤ 0.176

LS

F

TSTS

T

F

TSTS

T

F

None

T

T

Figure 19. Optimal sparse decision tree for MDMKP ASP

prediction. The first meta-feature examines is the average tightness of the demand

constraints. If the average tightness is less than 0.625 and the minimum objective to

constraint correlation of the demand constraints is less than 0.156, then the decision

tree predicts that none of the examined metaheuristics will perform well on the in-

stance. An effective ECI instance generation method should produce a distribution of

correlation coefficients across the entire possible range, indicating that no examined

metaheuristic is recommended. Of the 986 MDMKP instances examined, 196 are

observed to not have an effective metaheuristic.

Examining the optimal decision tree model through the instance space in Figure 20

shows a similar story to Figure 14. The predictions for both models are similar, such

as the predictions for the bottom-right collection of instances to not perform well for

any examined metaheuristic. The SVM classifier does predict SS more than GOSDT,

while GOSDT favors the LS.

76

−8

−4

0

4

−4 −2 0 2 4 6
Z1

Z
2

Predicted Metaheuristic

LS

None

SS

TSTS

Figure 20. GOSDT predicted best metaheuristic for the MDMKP

The performance of two classification models was evaluated on testing data. The

GOSDT classifier demonstrated an accuracy of 85.35%, while the SVM classifier had

an accuracy of 87.37%. There is no evidence of outfitting occurring between either

model, but the sparsity component of GOSDT is useful for generalizing the classifier

to unseen test instances (Lin et al., 2020). If instead a greedy decision tree model

is employed without pruning, the risk of overfitting to the training data increases,

leading to suboptimal performance when analyzing unseen data (Bertsimas and Dunn,

2017).

The results involving the entire subset of MDMKP instances are summarized in

the confusion matrices presented in Figures 21 and 22. Both models make similar

misclassifications, with the primary errors arising from predicting no metaheuristics

as the best option when LS is observed as the best choice, and predicting TSTS when

no good metaheuristics are identified. The dominant observed and correctly predicted

best metaheuristic is TSTS.

77

367

8

0

19

4

19

64

0

10

13

1

2

0

0

2

27

8

0

134

112

147

48

0

1

0None

LS

AMS

SS

TSTS

TSTS SS AMS LS None
Truth

P
re

di
ct

io
n

Figure 21. Confusion matrix for GOSDT

376

9

0

9

4

22

67

0

4

13

1

2

0

0

2

11

8

0

146

116

134

58

1

3

0None

LS

AMS

SS

TSTS

TSTS SS AMS LS None
Truth

P
re

di
ct

io
n

Figure 22. Confusion matrix for SVM

78

3.5 Conclusion

This work has examined the ASP for the MDMKP under the lens of ISA with a

new set of test instances. Using ISA, the instance space is shown and the performance

of selected metaheuristics are examined in the instance space. To address the ASP an

alternative classification model is proposed. By combining the interpretability and

simplicity of GOSDT with ISA we have demonstrated another method to add insights

into the conditions under which a given metaheuristic is expected to perform. The

comparisons between the classification model included in the ISA methodology and

the proposed alternative GOSDT reveal no loss in predictive capabilities, but with a

more interpretable model.

The proposed method of integrating a optimal classification tree into ISA provides

an alternative machine learning classifier within the ISA methodology as opposed to

a replacement. A decision tree model removes ambiguity between the mapping of

problem structure to metaheuristic selection in the ASP. Previously, the approach

within ISA is to examine the distribution of meta-features across the instance space,

as shown in Figure 13, then combine the insights gained from the algorithm footprints

across the instance space to discover the relationship between meta-features and al-

gorithm performance. By implementing a sparse optimal classification tree, the most

influential meta-features and their inflection points for the ASP are revealed.

There are two main limitations to this work. First, the focus was on metaheuristic

solution procedures thus excluding work established by Hvattum et al. (2010) since

it involves an exact approach through CPLEX. Second, there was no attempt to

optimally tune the metaheuristics to the problem set. Admittedly, changing meta-

heuristic parameter settings will affect performance, but the focus of this work was

using a improved test problem space within an ISA framework to demonstrate new

insights into algorithm performance. Future work will expand the subset of the algo-

79

rithm space examined, examining optimally tuned algorithms, and further problem

generation methods to further cover the problem instance space.

80

IV. An Optimization Framework for Filling the Instance
Space of Multidemand Multidimensional Knapsack Problems

4.1 Introduction

When evaluating solution procedures in optimization, a common approach is to

test the portfolio of solution procedures empirically through a variety a test instances.

Using test instances that are randomly generated, selected from a benchmark library,

or drawn from real-world scenarios, the performance of a solution procedure is effec-

tively examined and compared to existing methods. An issue with empirical testing

is the potential bias of the underlying structure of test instances. Across optimization

problem types, varying the number of decision variables or constraints in a problem

does not guarantee problem diversity in empirical tests.

Empirical testing of solution procedures as advocated by Hooker (1994) is a vi-

able alternative to theoretical worse-case and average-case results when determining

whether an approach is successful in practice. By utilizing a rigorous experimental

design and analysis in empirical testing, theories may be derived by mapping test in-

stance configuration to solution procedure performance. This idea is expanded upon

by Hooker (1995) by arguing for competitive testing to highlight “why” a solution

procedure is better and the need to clarify strengths and weaknesses of a solution

procedure.

The No-Free-Lunch (NFL) Theorem by Wolpert and Macready (1997), which

states it is impossible for any one algorithm to outperform all other algorithms when

averaged over all possible optimization problems, is the motivation of this work. The

root of NFL lies in the test instances provided for empirical testing. Test instances

should be diverse, unbiased, challenging, practical, and discriminate algorithm perfor-

mance in coordination with NFL. Hooker (1995) argued that randomly generated test

81

instances lack in problem diversity and common benchmark libraries of instances in-

clude intrinsic biases which do not stress test algorithms to a sufficient degree. These

issues prevalent within the empirical testing of algorithms results in the over-tuning

of algorithms to a small subset of instances while ignoring the potential trade-offs

when the test instance subset is expanded as stated in NFL.

Culminating from the ideas expressed by Hooker (1995) and inspired by NFL,

Smith-Miles (2019) developed Instance Space Analysis (ISA) to improve the under-

standing between solution procedure performance and the structure of test instances.

ISA provides a systematic method to describe a problem of interest by compartmen-

talizing all aspects of the problem into component spaces. These spaces encompass

the test instances employed, the features utilized to characterize these test instances,

the solution procedures employed for evaluation, and the performance measures used

to assess the efficacy of the solution procedures. ISA extends the framework outlined

in the Algorithm Selection Problem (ASP) of the seminal work by Rice (1976), while

placing emphasis on the associations between solution procedure performance and

instance configuration.

Current research in the empirical evaluation of solution procedures in optimization

assumes the distribution of test instances is sufficient to generalize to all instances of

a problem. This assumption is implicitly declared by drawing on historical instances

found in benchmark libraries, real-world scenarios, or randomly generated while ig-

noring any validation of the structure of the collection of test instances. Therefore,

it is important to utilize the tools provided in ISA in coordination with the challenge

presented by Hooker (1995) to discover insights of the strengths and weaknesses of

solution procedures. This work focuses on the instance generation procedure typ-

ically ignored in the research process and presents a method for targeting specific

configurations of test instances to enlarge the scope of existing collections of test

82

instances.

In this work, the problem of interest in the Multidemand Multidimensional Knap-

sack Problem (MDMKP). The MDMKP is concerned with selecting an optimal subset

from n available items with integer profits/costs {c1, c2, . . . , cn} such that their sum

total is maximized and integer weights wij across dimensions m + q. The knapsack

is constrained m dimensions to a set capacity such that total weight does not exceed

capacity across each dimension while also requiring q dimensions of demands to be

met such that total weight meets a threshold across each dimension. The MDMKP

is unique from other knapsack variants in that the objective function coefficients are

unconstrained in sign. The MDMKP is formulated as:

max
n∑

j=1

cjxj (14)

s.t.
n∑

j=1

wijxj ≤ bi, for i = 1, . . . ,m, (15)

n∑
j=1

wijxj ≥ bi, for i = m+ 1, . . . ,m+ q, (16)

xj ∈ {0, 1}, for j = 1, . . . , n, (17)

where xj is a binary decision variable to determine whether to include item j in

the knapsack. Additionally, the right-hand-side (RHS) capacity/requirement values

are positive, i.e., bi > 0 for i = 1, . . . ,m + q, and the weights are assumed to be

nonnegative, i.e., wij ≥ 0 for i = 1, . . . ,m + q, j = 1, . . . , n. Each of the m

constraints in (15) is called a knapsack constraint, while each of the q constraints of

family (16) is referred to as a demand constraint.

83

4.1.1 Literature Review

Test instance generation is usually not a focus of most research in optimization.

Empirical evaluations of solution procedures are tested on benchmark test instances

or a real-world scenario of interest. If test instances are generated, they are usually a

short portion of the methodology while the majority of the section is directed towards

the solution procedure. However, the idea of examining the underlying distribution

of test instances is not new and has been explored across multiple problem classes in

optimization.

In the 0-1 Knapsack Problem (KP), the MDMKP with m = 1, the instance gen-

eration methods set forth by Balas and Zemel (1980) defined an original classes of

randomly generated instances of the KP as uncorrelated, weakly correlated, strongly

correlated, and subset sum. Additional classes are defined by Martello et al. (1999)

including inverse strongly correlated, almost strongly correlated, similar uncorrelated

weights, even-odd subset-sum, and even-odd strongly correlated. The correlated

classes are based upon linear combinations of uniformly distributed random vari-

ables to induce the correlation structure such as the weakly correlated defined by

setting the weights to a discrete uniform distribution with range [0,R] and profits as

a function of their weights minus one tenth of their upper bound.

Building upon these classes, the work by Pisinger (2005) explored the original

classes of the KP and asked the question “where are the hard knapsack problems?”.

The problem classes lacked a full exploration of potentially difficult test instances and

visualized the minor differences between multiple problem classes such as the almost

strongly correlated and strongly correlated instances. From this initial exploration,

Pisinger (2005) defined six more classes of test instances which were difficult for

dynamic programming algorithms to find optimal solutions for and posed unique

structure from the previous classes.

84

Smith-Miles et al. (2021) revisits the question “where are the hard knapsack prob-

lems?” through the lens of ISA. Additionally, they propose four new classes of KP

instances including quadratic fit, cubic fit, random ceiling, and profit ceiling large

only. These four classes, in addition to the previous 16, constitute known set meth-

ods to generate KP instances with their generation procedures outlined in Table 1 of

Smith-Miles et al. (2021). Other KP instances are generated through an genetic algo-

rithm (GA) which attempts to fill gaps in the instance space based on the procedure

outlined by Smith-Miles and Bowly (2015).

Instance generation methods have also been explored for other knapsack problem

variants. Reilly (2009) finally examined the correlation induced by instance genera-

tion methods for the KP, generalized assignment problem, multidimensional knapsack

problem (MKP), and set-covering problem. The majority of test instances examined

lacked a full range of correlation coefficients and instead are insufficiently qualified

as “weakly correlated” or “almost strongly correlated”. The poorly defined classes

of test instances are based on an implied correlation structure. Instance generation

methods with an implied correlation structure are referred to as an implicit correlation

induction (ICI) method. The implications of an ICI method are a lacking of quantifi-

able measures of correlation and the lack of systemic control over the correlation in

a computational study.

In contrast to an ICI method, Reilly (2009) defines explicit correlation induction

(ECI) methods and their advantages over ICI methods. ECI methods instead target a

predefined correlation structure and provide the following benefits: (1) ECI methods

allow the user to specify the correlation structures in experiments, (2) the correlation

structure is controllable for systemic changes needed in a computational study, (3) the

distributions of coefficient values are no longer confounded with correlation structure.

ECI methods for the MKP include Cho et al. (2008), where the full range of cor-

85

relation coefficients are explored across each dimension. When compared to existing

heuristics for the MKP by Hill et al. (2012) the explicit correlation structure with

increasing problem size degrades performance of existing heuristics. These types of

results would not have been possible if only the test library of instances were used.

Hill et al. (2012) demonstrates several heuristics which would appear insignificant

if the predominant set of test instances were used for the empirical study. Similar

findings by Hiremath and Hill (2013) occur in the multiple-choice multidimensional

knapsack problem (MCMKP).

Beyond the KP and its variants, an instance generation scheme for job shop

scheduling problems with desirable properties and ECI is presented by Hall and Posner

(2001). The properties of correctness, applicability, and reproducibility are expanded

upon in the work by Hall and Posner (2010). Other examples of instance generation

schemes which contain desirable properties include the works by Romeijn and Morales

(2001) in supply chains, Laguna and Mart́ı (2001) in sparse graphs, and Arthur and

Frendewey (1988) in the traveling salesman problem (TSP). While these examples

include desirable properties in their instance generation method, few have been ex-

amined in an ISA framework such as the job shop scheduling problem (Smith-Miles

et al., 2009), the graph coloring problem (Smith-Miles et al., 2014), the max-cut prob-

lem (McAndrew, 2020), the curriculum-based course timetabling (CB-CTT) problem

(De Coster et al., 2022), and the TSP (Smith-Miles and Lopes, 2012).

The methods described by Lopes and Smith-Miles (2010) explore the discrepancies

between generated instances for the CB-CTT by Burke et al. (2008) and real-world

instances from the University of Udine. The instance generator is redefined in subse-

quent work by Lopes and Smith-Miles (2013) to address these issues by focusing on

minimizing the differences between the generated synthetic instances and the real-

world instances while providing discriminating performance for two distinct solution

86

methods. A recent work by De Coster et al. (2022) views the generated instances in

the defined instance space. The results indicate the instance space is not adequately

explored and the random generator from Lopes and Smith-Miles (2013) is extended by

performing a principal component analysis on parameters of the real-world instances,

sampling from the resulting distribution to obtain unique instances, then performing

the inverse of the principal component analysis to obtain parameters in the original

parameter space.

Ultimately, none of the various instance generation methods in the literature com-

bine the desired principles of correctness, applicability, and reproducibility, an ECI

method, and view the collection of instances through ISA. In particular, for the

MDMKP the literature is sparse for solution methods, applications, and instance

generation. By contrast, the KP contains examples of each distinct aspect listed but

not in combination with each other. The KP literature serves as a complement to our

work, in addition to the different ISA formulations across different problem classes.

We build upon work in validating instance generation methods for the MDMKP by

Scherer et al. (2023b) and the ASP by Scherer et al. (2023a).

The remainder of this paper is organized as follows. Section 4.2 depicts the prob-

lem by utilizing previous work from the known literature to generate the instance

space for the known sources of MDMKP instances. Section 4.3 explains the method-

ology to target specific regions of the instance space through a goal programming

method. To accomplish this, several modifications of the ISA methodology are needed

without losing any information that is captured in the instance space. From this

methodology, the resulting instance space is shown in Section 4.4 with the targeted

instances. Section 4.5 discusses the implications of the targeted instances on the

instance space in terms of metaheuristic performance and the mapping of instance

structure to predicted performance. Finally, Section 4.4 summarizes the contributions

87

of this work and directions for future research.

4.2 Problem Description

ISA serves as a method to break down an optimization problem into distinct

component spaces as illustrated in Figure 23. This concept was first introduced as

ASP in Rice’s seminal work (Rice, 1976), as depicted within the dotted box in the

figure. Smith-Miles et al. (2014) expanded on this idea. However, the ISA framework

goes beyond the original scope of the ASP, which primarily focuses on identifying

the most suitable algorithm from a given portfolio based on measurable features

derived from a collection of test instances. Instead the ISA framework allows a closer

examination of the current set of test instances by examining algorithm footprints and

regions where new test instances are needed to fill gaps present within the instance

space.

For the MDMKP, Scherer et al. (2023b) decomposes the problem into its compo-

nent spaces, borrowing from the literature of KP variants and adjusting measures to

handle the multidimensional aspects of the knapsack and demand constraints. Subse-

quent work by Scherer et al. (2023a) examine the MDMKP across the known solution

methods present in the literature. Beginning with the seminal work by Cappanera

and Trubian (2005) with a tabu search method which borrows from work by Glover

and Kochenberger (1996) in the method of strategic oscillation across the feasibility

boundary. Followed by a simpler adaptive memory search by Arntzen et al. (2006)

which focuses on tuning parameters to balance the level of feasibility against the

quality of a solution. A scatter search implementation set forth by Hvattum and

Løkketangen (2007) tackles the MDMKP from a evolutionary, population based ap-

proach. The most recent approach by Lai et al. (2019) utilizes multiple stages of tabu

search combined with a balanced evaluation function between the quality of solution

88

Figure 23. Summary of ASP (Rice, 1976) shown in dotted box, extended upon by
Smith-Miles et al. (2014)

89

and the degree of infeasibility present in a solution.

The main source of test instances which constitute the problem subset of the

MDMKP are from a known test library (Beasley, 1990), referred to as the Beasley

set of instances, and originate from the instance generation method set forth by Cap-

panera and Trubian (2005). The authors employ knapsack constraints derived from

MKP instances as defined by Chu and Beasley (1998). These constraints are further

enhanced by the inclusion of demand constraints and objective function coefficients.

The generation process follows a specific procedure: initially, the number of knapsack

constraints, denoted as m, is set to either 5, 10, or 30. The number of demand con-

straints, denoted as q, is determined based on the value of m. Once m is fixed, the

value of q can be set to one of three options: q = 1, q = m/2, or q = m. Additionally,

the number of variables, denoted as n, is set to either 100, 250, or 500. The objective

function coefficients are divided into two cases: the positive case where the objective

function coefficients are nonnegative and the mixed case where the objective function

coefficients are unconstrained in sign.

The secondary source of test instances utilized is derived from the Primal Problem

Instance Generator (PPIG) set forth by Scherer et al. (2023b). PPIG employs a

sampling-based approach for generating instances starting from the primal feasible

space. PPIG involves generating a set of k solutions, where each decision variable

has a probability p of being set as active (i.e., assigned a value of 1). The left-hand-

side (LHS) coefficients of each constraint are generated in a predetermined manner

to capture the desired problem meta-features. By applying each of the k solutions to

the constraint coefficients, the corresponding right-hand side (RHS) values for each

instance are obtained, resulting in an empirical distribution of RHS values. These

empirical distributions are then used to set the final RHS values for each constraint

in the problem instance. The instances generated in this fashion are referred to as

90

the Scherer set of instances.

By utilizing the method set forth by Cho et al. (2008) in the MKP, PPIG is aug-

mented to explicitly induce desired correlation to the MDMKP instances. The pro-

cedure involves using the rank correlation induction method from Iman and Conover

(1982), adapted for the MKP in Cho et al. (2008) and augmented for the MDMKP

in Scherer et al. (2023a). This extended procedure enables us to generate the left-

hand-side (LHS) coefficients in PPIG while explicitly maintaining the desired cor-

relation coefficient values between the objective function coefficients and the LHS

coefficients. The resulting instances generated through this approach are referred to

as the Scherer Correlated set of instances, highlighting the incorporation of explicit

correlation within the problem structure.

From these three sources of instances, we obtain 990 test instances. Of which,

we removed 2 test instances because the Gurobi solver was unable to find an integer

feasible solution after 6 hrs of runtime. The performance metric is the quality of the

solution, measured by examining the best objective function value observed for an

integer feasible solution. We utilize an Intel© CoreTM i7-11700 CPU at 2.5GHz with

32 GB RAM for each of our tests.

After collecting the meta-feature values, measuring metaheuristic performance,

and assigning the source of instances, we obtain the necessary inputs known as the

meta-data needed to conduct ISA on the MDMKP by the Instance Space Analysis

Toolkit, a MATLAB-based set of tools which automatically conducts ISA (Muñoz

and Smith-Miles, 2020b). The toolkit is the underlying engine in the Melbourne

Algorithm Test Instance Library with Data Analytics (MATILDA) online analysis

tool. The detailed procedures used in the ISA methodology are discussed by Smith-

Miles and Muñoz (2021) and the specific meta-features used are discussed by Scherer

et al. (2023b).

91

As the output of the Projecting Instances with Linearly Observable Trends (PI-

LOT) procedure used in ISA, the instance space is described through a projection

matrix of the meta-feature values to a two-dimensional instance space. The projection

is shown in (18). The output are coordinates of the instance space for an observed

test instance, where the coordinates are designated based on a linearly observed trend

of the difficulty of the test instance for the portfolio of metaheuristics to find high

quality solutions for.

 Z1

Z2

 =

−0.2742 0.0232

−0.1321 0.2524

−0.2695 −0.3597

0.4183 −0.2882

0.0334 0.509

0.2937 −0.2537

0.1802 −0.5974

−0.115 −0.359

0.1624 0.2651

0.221 −0.379

T

Decision Vars

Average Constraint Tightness - D

Prop Part Dominance - K

Max Obj to Constraint Corr - K

Min Obj to Constraint Corr - K

Range Obj to Constraint Corr - D

Range Within Constraint Corr - K

Max Within Constraint Corr - D

Min Within Constraint Corr - D

Range Across Constraint Corr

(18)

The resulting instance space is shown in Figure 24, color-coded by the source of

the test instances. The linearly observable trend of difficult instances is located in

the lower-right of the instance space, while the upper-left are the easier instances.

The difficulty is measured by the performance space, where the majority of the meta-

heuristics failed to obtain high quality solutions for the Scherer Correlated instances,

while multiple metaheuristics found high quality solutions for the original Beasley

instances.

92

Figure 24. Instance space from Scherer et al. (2023a)

ISA performs algorithm selection through Performance Prediction and Automated

Algorithm Selection (PYTHIA) which predicts the regions of strengths or weaknesses

of each metaheuristic in the instance space. PYTHIA is based on a Support Vector

Machine (SVM) that uses the coordinates of an instance in the instance space and

outputs a binary measure of performance (i.e., good or bad) for each metaheuristic.

The predictive performance of PYTHIA allows a measure of the adequacy of the

gathered meta-features to characterize the MDMKP. We obtain an 84.7% accuracy

of correctly selecting a metaheuristic with good performance for a given instance.

Through the combination of the projection in (18) and the instance space shown

in Figure 24, the regions of particular meta-feature values are distinguishable. In

particular, the region in the lower portion of the instance space is characterized by

instances with the full range [-1,1] of correlation coefficients due to the instance gen-

eration method utilizing an explicit correlation. Of the 10 meta-features used in (18),

7 are related to the correlation structure of an MDMKP instance. The instances in

the upper region of the instance space contain demand constraints with less tightness

93

on average compared to the lower region.

ISA is particularly useful for exposing regions of the instance space lacking in

diverse instances (Smith-Miles and Bowly, 2015). To target a region of the instance

space, Smith-Miles and Bowly (2015) use a GA with multiple strategies to obtain

novel instances which fill the gaps present in an instance space of the graph coloring

problem. The authors adopt four strategies to vary the fitness function of the GA

and the selection of target points. The first rewards increased distance from the

set of known instances, the second adopts a grid of target points across the valid

instance space with a fitness function minimizing distance to the point, the third uses

target points along the theoretical boundary of the valid instance space, and the final

strategy chooses points arbitrarily close to known instances but spread throughout

the valid instance space.

We adopt a similar method to target different regions of the instance space, but

we select target points based on gaps present in the instance space shown in Fig-

ure 24. Instead of a GA, we use a direct approach by formulating the problem in a

mathematical optimization framework. In particular a goal programming approach

aiming to find the meta-feature values needed to obtain instances in the desired region

of the instance space. Then through PPIG, we generate instances with controllable

meta-feature values for the MDMKP. We examine the newly generated instances real-

ization in the instance space and test their difficulty by applying the aforementioned

metaheuristics.

4.3 Methodology

To target a region of the instance space, we adopt a goal programming approach to

find the necessary meta-feature values to construct a desirable instance. ISA performs

several tasks before PILOT to project the instances into the instance space. In

94

particular, a data preprocessing method which transforms the raw feature values into

inputs for the transformed features stated in (18). Additionally, the preprocessing

methods must be invertible to take necessary transformed feature values from an

optimization framework into raw feature values to target with instances generated

from PPIG.

ISA executes a number of data preprocessing tasks to prepare the meta-data for

additional tasks such as meta-feature selection and PILOT for dimension reduction.

Defined in Smith-Miles and Muñoz (2021), Preparation for Learning of Instance Meta-

data (PRELIM) converts the performance measure of each solution procedure into

a binary measure of “good” performance for binary classification, then bounds and

scales the features to reduce the effect of outliers. The bounding criteria is the

median plus or minus five times its interquartile range (IQR). To stabilize the variance

of the features and performance measures, one parameter Box-Cox transformation.

Following these transformations, the inputted performance measures and features

undergo standardization such that their mean is zero and standard deviation is one.

These converted values for the instance features are used as input to the projection

defined in (18).

The goal programming formulation is based on using the transformed feature

values, the projection in (18), and the deviations in the instance space in the (Z1, Z2)

coordinate plane. Specifically, the decision variables include the values to set for the

transformed feature values Fi, for i = {1, . . . , 10} and the positive and negative

deviations from the desired target point (X1, X2) for the first dimension {Z+
1 ,Z

−
1 }

and second dimension {Z+
2 ,Z

−
2 }. The constraints are based on the projection matrix

coefficients, {p2, p2} for i = {1,. . . ,10}, from PILOT and maintaining the feasible

boundary of possible transformed feature values, {li, ui} for i = {1,. . . ,10}, provided

by utilizing the bounding and scaling procedures in PRELIM. This results in the

95

mathematical optimization framework formulated as:

min Z+
1 + Z+

2 + Z−
1 + Z−

2 (19)

s.t.
10∑
i=1

p1iFi + Z+
1 − Z−

1 = X1 (20)

10∑
i=1

p2iFi + Z+
2 − Z−

2 = X2 (21)

li ≤ Fi ≤ ui for i = {1, . . . , 10} (22)

Z+
1 , Z

+
2 , Z

−
1 , Z

−
2 ≥ 0 (23)

The formulation using (18) presents an issue with PPIG. Several of the constraint

correlation meta-features are dependent on the initial objective to constraint cor-

relation distribution chosen. The correlation structure for the MDMKP is in the

general form shown in (4.3). The first column and row are defined explicitly to match

the desired correlation structure, while the subsequent entries in the matrix are ele-

mentwise products between the corresponding column and row entries. Therefore a

solution presented by the goal programming formulation may recommend impossible

combinations of meta-feature values. For example, the goal program may find an

optimal solution by setting both the maximum and minimum objective to constraint

correlation for the knapsack constraints of 0, while the maximum within constraint

correlation for the knapsack constraints must be 1.

1 ρ(c, A1) · · · ρ(c, Am+q)

ρ(c, A1) 1 · · · ρ(c, A1) ∗ ρ(c, Am+q)

...
...

. . . · · ·

ρ(c, Am+q) ρ(c, A1) ∗ ρ(c, Am+q)
...

. . .

By reducing the final meta-features selected in the Instance Space Analysis Toolkit

96

settings to the minimum recommended setting of 4 (Smith-Miles and Muñoz, 2021),

the projection matrix shown in (24) is obtained. The resulting instance space shown in

Figure 25 appears to distinguish performance, sources, and feature values distributed

across the instance space. Upon further examination of PYTHIA the classifier per-

forms similar to the higher dimensional projection with an accuracy of 85.2%. The

difficult instances still lie within the lower-right region of the instance space. There-

fore we retain most of the properties of ISA while reducing the feature space to a

manageable number of meta-features that can be used within the PPIG generation

method.

 Z1

Z2

 =

0.5004 0.2304

0.0043 0.3854

−0.3554 0.3986

0.125 −0.1931

T

Constraints - D

Average Constraint Tightness - D

Min Obj to Constraint Corr - K

Max Within Constraint Corr - D

(24)

After manually selecting a target point in the instance space and obtaining the

required meta-feature values by using inverse PRELIM, PPIG naturally fits into the

instance generation methodology. PPIG allows manipulations in its parameters to ad-

dress the average constraint tightness by changing the sampling from the distribution

of RHS values and the correlation structure through its explicit correlation induction

method. The resulting instances are then processed through PRELIM, projected into

the instance space, and their realization in the instance space compared to the desired

target point is easy to visualize.

In this work, we choose target points based on existing gaps within the feasible

region of instances while remaining on the boundary of the current collection of

instances. The purpose of this work is to demonstrate the controllable properties

97

Figure 25. Reduced instance space

of targeting an instance space through an optimization framework then generating

instances close to the targeted region through PPIG. Therefore we choose to target 3

separate regions of the instance space and generate 45 instances from PPIG to examine

the proximity of the instance realizations in the instance space. We target (-0.5,-1.5),

(1.5,-0.5), and (0,1.5) because two target points are based on finding instances between

the Scherer Correlated set of instances and the Beasley set of instances while the third

target point is to demonstrate our methodology for expanding the original Beasley

set of instances.

4.4 Results

The recommended meta-feature settings to obtain an instance realization at (-0.5,-

1.5) in the reduced instance space are: containing one demand constraint, setting the

constraint tightness of demand constraints to zero, setting the minimum objective to

constraint correlation for the knapsack constraints to -0.237, and setting the maximum

within constraint correlation for the demand constraints to 0.01. A similar process is

98

used for the remaining two target points which are then matched by PPIG.

To control the meta-features in PPIG, the number of demand constraints is trivial

because it is an input parameter to the instance generation method. The average

tightness is obtained by intuitively selecting from the distribution of the RHS values

generated in PPIG. For example, to obtain an average tightness of zero we select

the maximum value of our observed RHS value distribution. If we need a nontrivial

constraint tightness, such as the recommended setting of 0.397 to target (1.5,-0.5),

then we select a random sample of RHS values such that their average is 0.397,

resulting in different combinations of RHS values in the instance realization.

For the correlation values, we utilize a uniform distribution for the explicit decla-

ration of correlation coefficients between the objective function and constraint coeffi-

cients. For example, the minimum objective to constraint correlation for the knapsack

constraints to target point (-0.5,1.5) must be -0.237, therefore we set this to be the

lower bound of our distribution of explicitly declared correlation coefficients. While

the maximum within constraint correlation for the demand constraints is set by uti-

lizing a uniform distribution for the explicit declaration of correlation coefficients

between the objective function and constraint coefficients such that their element

wise product is no more than the recommended value.

The results of the procedure are shown in Figure 26, where the deviations of the

instance realizations from the target points are mostly due to fluctuations by using the

uniform distribution for the ECI portion of PPIG. If the correlation coefficients were

set to exactly the recommended levels without variation, then the newly generated

instances would lack diversity from each other in the instance space. By allowing a

degree of variance in the correlation, we obtain unique MDMKP instances which help

to fill the gaps present in the instance space while showing the effectiveness of the

proposed methodology.

99

Figure 26. MDMKP instance realizations from PPIG in the reduced instance space

To measure the effectiveness of PPIG to target the specific regions of the instance

space, we measure the average euclidean distance for the 45 generated instances for

each targeted point. The results are shown in Table 5, with the largest distance occur-

ring from targeting the point (-1.5,0.5), due to the minimum objective to constraint

correlation for the knapsack constraint following a uniform distribution with the lower

bound set to zero. Therefore we observe instances, such as the outliers appearing in

the upper-left region of the instance space, which contain minimum correlation values

further away from zero.

Table 5. Euclidean distance to target for realized instances

Target Points
(0.5,-1.5) (1.5,-0.5) (-1.5,0.5)

Average 0.42 1.25 2.12
SD 0.11 0.91 1.09
Median 0.43 1.95 2.56

100

4.5 Discussion

To examine the new instances in the ASP for the MDMKP, we use previous work

by Scherer et al. (2023a) to produce the algorithm footprints of the four examined

metaheuristics. Shown in Figure 27, the two-stage tabu search method by Lai et al.

(2019) is expected to perform best for the instances located in the upper-left region

of the instance space. While the instances located in the lower-right section of the

instance space have been observed to obtain better solutions through the scatter

search method from the work by Hvattum and Løkketangen (2007) and the local

search method from the work by Cappanera and Trubian (2005). The instances in

the lower-right region of the instance space however are not expected to contain any

good performance from the implemented metaheuristics.

Figure 27. Footprints of metaheuristics in the reduced instance space

101

The metaheuristics are applied to the new realizations of the targeted instances,

then compared to the estimated performances through the footprints shown in Fig-

ure 27 to gauge the effectiveness of ISA to characterize new instances of the MDMKP.

The results are summarized in Table 6. In some instances, the metaheuristics reported

the same solution, therefore Table 6 includes counts for ties between the best found

metaheuristic. We refer to the local search method (Cappanera and Trubian, 2005)

as LS, the adaptive memory search method (Arntzen et al., 2006) as AMS, the scat-

ter search method (Hvattum and Løkketangen, 2007) as SS, and the two-stage tabu

search method (Lai et al., 2019) as TSTS.

Table 6. Number of instances with best found solution by metaheuristic

LS AMS SS TSTS
(-0.5,-1.5) 31 14 19 0
(1.5,-0.5) 30 9 13 3
(-1.5,0.5) 19 10 16 9

For the 45 instances generated to target (-0.5,-1.5), LS found the best solution

for 31 instances, while SS found the best solution for 19 instances and AMS for 14

instances. For the 45 instances generated to target (1.5,-0.5), similar results occurred

with LS finding the best solution for 30 instances, but SS and AMS did slightly

worse. Results were more spread across the metaheuristic portfolio for (-1.5,0.5),

where TSTS began to show its effectiveness compared to the other targets, but largely

LS performed best.

The results of the portfolio footprints compared to the results observed in Table 6

differ in several aspects, most notably the dominance of TSTS compared to the other

metaheuristics. However, when examining the performance of the metaheuristics for

targets (-0.5,-1.5) and (1.5,-0.5), the observed performance is mostly in agreement

with the established footprints. SS and LS performed well on instances in the lower-

right region of the instance space, with LS performing well on instances between the

102

Beasley and Scherer Correlated sources of test instances.

The largest difference is from the upper-left region of the instance space, where

TSTS is found to be most effective in the original set. However the results in Table 6

for the target point (-1.5,0.5) indicate LS found the best solution for the most number

of the 45 generated instances. The ISA toolkit also provides the footprints for each

solution method when separately evaluated. The resulting footprints are shown in

Figures 28-31. Including these perspectives, the similar performances across the port-

folio of metaheuristics in Table 6 now align with the expectations of the metaheuristic

footprints. These instances are characterized as easier to solve, given the ability of

the known solution methods to all find the best known solutions for most instances.

Figure 28. LS footprints across the instance space

4.5.1 Updating the Instance Space

The ISA methodology is an iterative process, thus the added instances need to

be reevaluated to update the instance space. The instances generated to fill the gaps

103

Figure 29. AMS footprints across the instance space

Figure 30. SS footprints across the instance space

104

Figure 31. TSTS footprints across the instance space

present within the instance space in Section 4.4 can be assessed in a new instance

space with a possibly new set of features to describe their difficulty. After adding the

135 instances generated from PPIG to target specific regions of the instance space,

the updated ISA produces the projection equation in (25) and the two-dimensional

instance space shown in Figure 32.

 Z1

Z2

 =

0.2656 0.0315

−0.1966 −0.3061

0.0926 −0.4124

0.1889 0.0021

T

Average Constraint Tightness - D

Proportion Partial Dominant Pairs - K

Max Obj to Constraint Corr - D

Profits Coefficient Variation Normalized

(25)

A different subset of meta-features is selected from the original four used in the

reduced instance space from Section 4.3. As a measure of instance difficulty, the

average constraint tightness for the demand constraints and a statistic relating the

objective to constraint correlation values remained. However, the other meta-features

105

Figure 32. Updated instance space

added are the proportion of partially dominant pairs for the demand constraints, and

the coefficient of variation for the objective function coefficients. The proportion of

partially dominant pairs is adapted from the work on the KP by Hall and Posner

(2007), but is directly tied to the objective to constraint correlation since the ECI

method in PPIG is based on rank correlation. Therefore the two meta-features are

not perfectly collinear but exhibit similar patterns across the instances observed.

In terms of the distribution of meta-features in Figure 32, the lower-left region of

the instance is characterized by difficult instances. In this region the average tightness

for the demand constraints and the coefficient of variation for the objective function

coefficients are lower values. While the proportion of partially dominant pairs for

the knapsack constraints are high. The lower region is where higher values for the

maximum objective to constraint correlation coefficients for the demand constraints

are observed, trending directly upwards in the instance space where instances with

lower correlation coefficients lie.

The footprints of the metaheuristics exhibit a similar pattern as reported in Sec-

106

tion 4.5, with the Scherer Correlated and the newly realized instances largely lacking

any effective metaheuristics. In comparison LS and TSTS perform best for the ma-

jority of the Beasley and Scherer instances. To help relate the problem structure and

the recommended metaheuristic for the ASP, an optimal sparse decision tree (Mc-

Tavish et al., 2022) adopted from the methodology set forth by Scherer et al. (2023a)

is shown in Figure 33.

To evaluate the model and avoid overfitting, the metadata for the final four meta-

features is evaluated with a 75/25 training/testing split. The testing data accuracy

of the Generalized Optimal Sparse Decision Tree (GOSDT) model to predict the best

metaheuristic given an MDMKP instance is 0.87. The sparse decision tree model

provides an interpretable answer to the ASP originally posed by Rice (1976). The

decision tree contains the properties of sparsity and optimality, compared to a greedy

decision tree (Hu et al., 2019).

107

Profits Coefficient Variation Normalized ≤ 0.144

Average Constraint Tightness - D ≤ 0.545

Max Obj to Con Corr - D ≤ −0.462

Max Obj to Con Corr - D ≤ −0.253

TSTS

F

LS

T

F

SS

T

F

TSTS

T

F

None

T

Figure 33. Optimal sparse decision tree for MDMKP ASP

4.6 Conclusion

This work has provided an optimization framework to generating MDMKP test

instances which target regions of the instance space. Using ISA the MDMKP is

separated into component spaces to ultimately answer the ASP. By producing a two-

dimensional visualization of the collection of instances, the metaheuristics may be

evaluated in terms of their effectiveness and the adequacy of the test set of instances.

Using a goal program to find desired meta-features and utilizing PPIG to generate

instances with the desired meta-features, the methodology presented in this work

shows promise to directly targeting regions of the instance space.

The instance realizations shown in the two-dimensional instances space provide a

visual measure of effectiveness of the methodology presented in this work. The goal

of the realized instances are to help present a diverse set of instances to use for future

108

empirical testing of the MDMKP. A final instance space is presented which utilizes

the added instances which are evaluated by the portfolio of metaheuristics examined.

While PPIG can generate feasible MDMKP instances, the limitations of using a

goal programming approach outlined in this work are from the recommended meta-

feature values. For example, if targeting certain regions of the instance space, the

goal program recommends meta-feature values which are at their extreme values. In

particular, the constraint tightness being set to maximum for either the knapsack

or demand constraints. Without loss of generality, for the knapsack constraints a

maximum tightness for each dimension of the constraints renders only a null solution

to be feasible while the demand constraints are ineffective.

In this work the final meta-features selected were reduced from 10 to 4. This reduc-

tion provided independent meta-features which were controllable through PPIG. How-

ever other methodologies extending this approach may result in meta-feature com-

binations which are impossible to produce because of dependencies of meta-feature

values such as the correlation structure discussed in Section 4.3. Other meta-features

which do not appear controllable under PPIG should be examined with scrutiny, as

this work found that the relationship between the objective and constraint correlation

is directly tied to the proportion of dominant pairs meta-feature. Therefore the two

may be interchangeable when attempting to generate targeted instances.

Future work may entail using PPIG on other knapsack variants. A natural ex-

tension would be towards the MKP or a multiple choice knapsack variant. The

combination of using instance generation procedures which are based on sampling

strategies and targeting regions of the instance space through goal programming is

another possible avenue of future research. The purpose of this work was to demon-

strate the methodology on a particular problem which has been mostly overlooked in

the literature but is easily extendable to other applications.

109

V. Conclusion

This research develops methods and applications for instance generation method-

ologies in the multidemand multidimensional knapsack problem (MDMKP). Initially

a literature review is conducted to examine the background for different subject areas

pertaining to this research. This broad review then focused into instance generation

methodologies and instance space analysis (ISA) to become foundational aspects of

this work. After gathering information over multiple subject areas, this research ap-

plied ISA to the MDMKP by defining all aspects required to fully investigate the

problem of interest. Followed by multiple variants of an instance generation method

based on a sampling of distribution of test instances. In addition, this research

conducted multiple empirical tests for the MDMKP including exact and inexact ap-

proaches. Lastly, to address directly targeting specific configurations of an MDMKP

instance, this research combined the instance generation procedure developed into a

goal programming framework to produce instance realizations with desired charac-

teristics.

The key findings of this research pertain to instance generation procedures, using

ISA in empirical research and providing algorithm insights into MDMKP perfor-

mance. These areas of research are combined in this dissertation to help generalize to

other problem classes in optimization and machine learning. The findings include the

use of ISA to verify the effectiveness of an instance generation procedure, the imple-

mentation of interpretable machine learning methods to help uncover the relationship

between test instance structure to solution procedure performance, and targeting re-

gions of the instance space through a controllable optimization framework.

110

5.1 Summary

Chapter II adopts ISA for the MDMKP and demonstrates the ISA methodology

as a verification of the diversity of the current collection of test instances and proposes

augmentations of the current test set. The ISA is conducted by breaking down the

component spaces for the MDMKP, most importantly defining the meta-features

which characterize the problem. Following this dissection of the problem, the original

test instances are evaluated through the Gurobi solver and shown in their instance

space. The multidimensional knapsack (MKP) instances of Cho (2005) and adding an

additional set of q ≥ constraints to generate MDMKP instances. The added instances

create issues with maintaining feasibility in the generation procedure. Subsequently

the Primal Problem Instance Generator (PPIG) is defined to address this feasibility

issue and demonstrated in the defined instance space. This contribution includes

defining the component spaces of the ISA for the MDMKP, analyzing added test

instances impacts on the instance space, and an instance generation procedure which

provides feasible and diverse instances.

Chapter III utilizes the existing solution methods for the MDMKP from the lit-

erature and gains perspective on the relationship between instance configuration and

solution procedure performance. This is accomplished by modifying the ISA and con-

structing an interpretable generalized optimal sparse decision tree (GOSDT) model

to predict the best metaheuristic for the algorithm selection problem (ASP). This

model replaces the existing support vector machine (SVM) classifier within the ISA

toolkit and provides a direct mapping between the decision boundaries for recom-

mending particular metaheuristics for a given instance. The findings include a lack

of effective metaheuristics when examining correlated instance generated by PPIG.

This contribution includes the first use of ISA with metaheuristics constituting the

algorithm space, an interpretable approach to answer the ASP, and exposing the lack

111

of high quality metaheuristics for instances outside of the original training set.

Chapter IV is a culmination of the two previous contributions into a targeting

procedure for generating instances to fill gaps present in the instance space. Utilizing

the ISA defined in the previous contributions and the metaheuristic performance for

the previous test instances, this contribution introduces an optimization framework

to target regions of the instance space. Initially a full instance space is shown to be

infeasible due to some meta-features being directly dependent on others, forcing the

recommended configurations to be impossible. To address this, a reduced instance

space is proposed which does not degrade the quality of the instance space to char-

acterize the test instances while granting controllable meta-features. The integration

of PPIG then produces instances which minimize the distance between the generated

instances realized in the instance space compared to the target points. This contribu-

tion includes a new goal programming model which gives optimal recommendations

for meta-feature values to target then demonstrates the capability of PPIG to produce

instances which target the recommended meta-feature values and result in filling the

gaps present in the instance space.

5.2 Future Work

This dissertation provides a substantial body of work to draw upon for future

research. Multiple aspects drawing from each contribution could be extended. For

the use of ISA on a given problem, the MDMKP is the selected problem of interest

in this research due to its applications for capital budgeting, aircraft loading, and

the location of undesirable facilities. However, other avenues to explore are the other

knapsack variants or other interesting classes of optimization problems. ISA is a

relatively new approach to characterizing a problem, with the majority of the problem

classes explored detailed by Smith-Miles (2019).

112

For instance generation procedures, there are many future directions of this work.

To begin, the optimization research community largely ignores the analysis of test

instances used in empirical testing; an issue addressed by Reilly (2009). ISA serves to

fill this need by showing the current collection of test instances in a convenient two-

dimensional visualization. Building upon this realization of inadequate test instances,

instance generation techniques are a large area to explore for multiple problem classes.

The principles of a well-defined instance generation procedure are outlined by Hall and

Posner (2010) but the properties of feasibility and diversity are the direct extensions

of this work.

The literature reviews, methodological advances, and avenues explored in this

dissertation vastly improve the empirical testing of solution procedures. The con-

tributions fulfill the needs for improving the test set of instances which exist for

the MDMKP, the ISA methodology for the ASP, and the use of instance genera-

tion procedures to generate instances with controllable configurations. As numerous

new solution procedures are proposed, the empirical testing of their effectiveness will

remain a key aspect in research.

113

Appendix A. Distribution of Features Across Instance
Spaces

Figure 34 depicts the instance space defined by (6) as it relates to the distribution

of meta-features. The lower-right portion of the instance space constitutes the region

with more difficult instances. The generation of more difficult instances relies on

higher values of the max across constraint correlation between the knapsack and

demand constraints, higher values of max within constraint correlation for the demand

constraints, and higher values for the number of demand constraints.

The upper-right region of the instance space consists of instances with lower values

for: the number of knapsack constraints, the min objective to knapsack constraint cor-

relation coefficient, the range within the knapsack constraint correlation coefficients,

and the max across constraint correlation coefficient. The meta-features which sepa-

rate the left band from the right band include: the proportion of partially dominant

items in the demand constraints, the min objective to constraint correlation coeffi-

cient for the demand constraints, and the coefficient of variation for the weights in

the demand constraints.

Figure 35 depicts the instance space defined by (7) as it relates to the distribution

of meta-features. The lower-right region of the instance space comprises of easier

instances with the most difficult instances clustered in the upper-left region. The

generation of more difficult instances relies on higher values of the number of knapsack

and demand constraints, higher values for the range between the objective function

and demand constraints correlation coefficients, higher values of the range within the

demand constraints correlation coefficients, higher values of max across constraint

correlation, lower values for the min within constraint correlation for the demand

constraints, and lower values for the min across constraint correlation.

The lower-right portion of the instance space consists of instances with: a lower

114

Figure 34. Distribution of features across Beasley instance space

115

number of knapsack and demand constraint, higher values of max constraint tightness

for the knapsack constraints, higher values of max objective to constraint correlation

for the knapsack constraints, and lower values of the range objective to constraint

correlation for the demand constraints. The cho set of instances defines the smaller

cluster located in the lower portion of the instance space, which are characterized by

a smaller number of demand constraints due to infeasibility issues from adding more

constraints.

Figure 35. Distribution of features across Cho and Beasley instance space

Figure 36 depicts the instance space defined by (8) as it relates to the distribution

116

of meta-features. The lower region of the instance space comprises of easier instances

with the most difficult instances in the upper region. The generation of more difficult

instances relies on higher values of the number of knapsack and demand constraints,

higher values for the range between the objective function and demand constraints

correlation coefficients, higher values for the range within constraint correlation for the

demand constraints, higher values of range across constraint correlation, lower values

for the min within constraint correlation for the demand constraints, and lower values

for the min across constraint correlation.

The cluster depicted in the lower region of the instance space is defined by in-

stances with lower values of the number of demand constraints, the range between

the objective function and demand constraint correlation coefficients, and the range

within the constraint correlation coefficients for the demand constraints. The lower

region is also defined by higher values of the max constraint tightness for the knapsack

constraints, the max between the objective and constraint correlations for the knap-

sack constraints, the min within the constraint correlation coefficients for the demand

constraints, and the coefficient of variation for the knapsack constraint weights.

117

Figure 36. Distribution of features across Scherer, Cho, and Beasley instance space

118

Bibliography

Ahuja, R. K., Magnanti, T. L. and Orlin, J. B. (1988), ‘Network flows’.

Alipour, H., Muñoz, M. A. and Smith-Miles, K. (2023), ‘Enhanced instance space
analysis for the maximum flow problem’, European Journal of Operational Research
304(2), 411–428.

Arntzen, H., Hvattum, L. M. and Løkketangen, A. (2006), ‘Adaptive memory search
for multidemand multidimensional knapsack problems’, Computers & Operations
Research 33(9), 2508–2525.

Arthur, J. L. and Frendewey, J. O. (1988), ‘Generating travelling-salesman problems
with known optimal tours’, Journal of the Operational Research Society 39(2), 153–
159.

Balas, E. and Zemel, E. (1980), ‘An algorithm for large zero-one knapsack problems’,
operations Research 28(5), 1130–1154.

Beasley, J. E. (1990), ‘Or-library: distributing test problems by electronic mail’,
Journal of the Operational Research Society 41(11), 1069–1072.

Bertsimas, D. and Dunn, J. (2017), ‘Optimal classification trees’, Machine Learning
106, 1039–1082.

Bierwirth, C., Mattfeld, D. C. and Watson, J.-P. (2004), Landscape regularity and
random walks for the job-shop scheduling problem, in ‘European Conference on
Evolutionary Computation in Combinatorial Optimization’, Springer, pp. 21–30.

Bowly, S., Smith-Miles, K., Baatar, D. and Mittelmann, H. (2020), ‘Generation tech-
niques for linear programming instances with controllable properties’, Mathematical
Programming Computation 12(3), 389–415.

Breiman, L. (2001), ‘Random forests’, Machine Learning 45(1), 5–32.

Breiman, L., Friedman, J., Olshen, R. and Stone, C. (1984), ‘Classification and re-
gression trees. wadsworth int’, Group 37(15), 237–251.

Burke, E. K., Mareček, J., Parkes, A. J. and Rudová, H. (2008), Penalising patterns
in timetables: Novel integer programming formulations, in ‘Operations Research
Proceedings 2007: Selected Papers of the Annual International Conference of the
German Operations Research Society (GOR) Saarbrücken, September 5–7, 2007’,
Springer, pp. 409–414.

Cacchiani, V., Iori, M., Locatelli, A. and Martello, S. (2022), ‘Knapsack problems-an
overview of recent advances. part ii: Multiple, multidimensional, and quadratic
knapsack problems’, Computers & Operations Research p. 105693.

119

Cappanera, P., Gallo, G. and Maffioli, F. (2003), ‘Discrete facility location and routing
of obnoxious activities’, Discrete Applied Mathematics 133(1-3), 3–28.

Cappanera, P. and Trubian, M. (2005), ‘A local-search-based heuristic for the
demand-constrained multidimensional knapsack problem’, INFORMS Journal on
Computing 17(1), 82–98.

Cho, Y. K. (2005), Developing new multidimensional knapsack heuristics based on
empirical analysis of legacy heuristics, PhD thesis, Air Force Institute of Technol-
ogy.

Cho, Y. K., Moore, J. T., Hill, R. R. and Reilly, C. H. (2008), ‘Exploiting empirical
knowledge for bi-dimensional knapsack problem heuristics’, International Journal
of Industrial and Systems Engineering 3(5), 530–548.

Chu, P. C. and Beasley, J. E. (1998), ‘A genetic algorithm for the multidimensional
knapsack problem’, Journal of heuristics 4(1), 63–86.

Chung, F. R. and Graham, F. C. (1997), Spectral graph theory, number 92, American
Mathematical Soc.

De Coster, A., Musliu, N., Schaerf, A., Schoisswohl, J. and Smith-Miles, K. (2022),
‘Algorithm selection and instance space analysis for curriculum-based course
timetabling’, Journal of Scheduling pp. 1–24.

Even, S., Itai, A. and Shamir, A. (1975), On the complexity of time table and multi-
commodity flow problems, in ‘16th annual symposium on foundations of computer
science (sfcs 1975)’, IEEE, pp. 184–193.

Garey, M. R. and Johnson, D. S. (1978), “‘strong”np-completeness results: Motiva-
tion, examples, and implications’, Journal of the ACM (JACM) 25(3), 499–508.

Garey, M. R. and Johnson, D. S. (1979), Computers and intractability, Vol. 174,
Freeman San Francisco.

Glover, F. and Kochenberger, G. A. (1996), Critical event tabu search for multidimen-
sional knapsack problems, in ‘Meta-heuristics’, Springer, Boston, MA, pp. 407–427.

Glover, F. W. and Kochenberger, G. A. (2006), Handbook of metaheuristics, Vol. 57,
Springer Science & Business Media, New York, NY.

Gortazar, F., Duarte, A., Laguna, M. and Mart́ı, R. (2010), ‘Black box scatter search
for general classes of binary optimization problems’, Computers & Operations Re-
search 37(11), 1977–1986.

Greenberg, H. J. (1990), ‘Computational testing: Why, how and how much’, ORSA
Journal on Computing 2(1), 94–97.

120

Hall, N. G. and Posner, M. E. (2001), ‘Generating experimental data for com-
putational testing with machine scheduling applications’, Operations Research
49(6), 854–865.

Hall, N. G. and Posner, M. E. (2007), ‘Performance prediction and preselection for
optimization and heuristic solution procedures’, Operations Research 55(4), 703–
716.

Hall, N. G. and Posner, M. E. (2010), The generation of experimental data for com-
putational testing in optimization, in ‘Experimental methods for the analysis of
optimization algorithms’, Springer, Boston, MA, pp. 73–101.

Hill, R., Moore, J., Hiremath, C. and Cho, Y. (2011), ‘Test problem generation
of binary knapsack problem variants and the implications of their use’, Int. J.
Operational Quantitative Management 18(2), 105–128.

Hill, R. R., Cho, Y. K. and Moore, J. T. (2012), ‘Problem reduction heuristic for
the 0–1 multidimensional knapsack problem’, Computers & Operations Research
39(1), 19–26.

Hill, R. R. and Reilly, C. H. (2000), ‘The effects of coefficient correlation structure in
two-dimensional knapsack problems on solution procedure performance’, Manage-
ment Science 46(2), 302–317.

Hiremath, C. S. and Hill, R. R. (2013), ‘First-level tabu search approach for solving
the multiple-choice multidimensional knapsack problem’, international Journal of
Metaheuristics 2(2), 174–199.

Hooker, J. N. (1994), ‘Needed: An empirical science of algorithms’, Operations re-
search 42(2), 201–212.

Hooker, J. N. (1995), ‘Testing heuristics: We have it all wrong’, Journal of Heuristics
1(1), 33–42.

Hu, X., Rudin, C. and Seltzer, M. (2019), ‘Optimal sparse decision trees’, Advances
in Neural Information Processing Systems 32.

Hvattum, L. M., Arntzen, H., Løkketangen, A. and Glover, F. (2010), ‘Alternat-
ing control tree search for knapsack/covering problems’, Journal of Heuristics
16(3), 239–258.

Hvattum, L. M. and Løkketangen, A. (2007), Experiments using scatter search for the
multidemand multidimensional knapsack problem, in ‘Metaheuristics’, Springer,
Boston, MA, pp. 3–24.

Iman, R. L. and Conover, W. J. (1982), ‘A distribution-free approach to inducing
rank correlation among input variables’, Communications in Statistics-Simulation
and Computation 11(3), 311–334.

121

James, G., Witten, D., Hastie, T. and Tibshirani, R. (2013), An introduction to
statistical learning, Vol. 112, Springer.

Kandanaarachchi, S., Muñoz, M. A., Hyndman, R. J. and Smith-Miles, K. (2020),
‘On normalization and algorithm selection for unsupervised outlier detection’, Data
Mining and Knowledge Discovery 34(2), 309–354.

Kang, Y., Hyndman, R. J. and Smith-Miles, K. (2017), ‘Visualising forecasting al-
gorithm performance using time series instance spaces’, International Journal of
Forecasting 33(2), 345–358.

Karmarkar, N. (1984), A new polynomial-time algorithm for linear programming, in
‘Proceedings of the sixteenth annual ACM symposium on Theory of computing’,
pp. 302–311.

Karp, R. M. (1972), Reducibility among combinatorial problems, in ‘Complexity of
computer computations’, Springer, pp. 85–103.

Kellerer, H., Pferschy, U. and Pisinger, D. (2004a), Introduction to np-completeness of
knapsack problems, in ‘Knapsack problems’, Springer, Berlin, Heidelberg, pp. 483–
493.

Kellerer, H., Pferschy, U. and Pisinger, D. (2004b), Knapsack problems, Springer,
Berlin, Heidelberg.

Laguna, M. and Mart́ı, R. (2001), ‘A grasp for coloring sparse graphs’, Computational
optimization and applications 19(2), 165–178.

Laguna, M. and Mart́ı, R. C. (2003), Scatter search: methodology and implementa-
tions in C, Springer Science & Business Media, Boston, MA.

Lai, X., Hao, J.-K. and Yue, D. (2019), ‘Two-stage solution-based tabu search for
the multidemand multidimensional knapsack problem’, European Journal of Oper-
ational Research 274(1), 35–48.

Lamine, A., Khemakhem, M. and Chabchoub, H. (2012), ‘Knapsack problems in-
volving dimensions, demands and multiple choice constraints: generalization and
transformations between formulations’, International Journal of Advanced Science
and Technology 46, 71–94.

Laurent, H. and Rivest, R. L. (1976), ‘Constructing optimal binary decision trees is
np-complete’, Information processing letters 5(1), 15–17.

Lin, J., Zhong, C., Hu, D., Rudin, C. and Seltzer, M. (2020), Generalized and scalable
optimal sparse decision trees, in ‘International Conference on Machine Learning’,
PMLR, pp. 6150–6160.

122

Lopes, L. and Smith-Miles, K. (2010), Pitfalls in instance generation for udine
timetabling, in ‘Learning and Intelligent Optimization: 4th International Confer-
ence, LION 4, Venice, Italy, January 18-22, 2010. Selected Papers 4’, Springer,
pp. 299–302.

Lopes, L. and Smith-Miles, K. (2013), ‘Generating applicable synthetic instances for
branch problems’, Operations Research 61(3), 563–577.

Lu, Y. and Vasko, F. J. (2020), ‘A comprehensive empirical demonstration of the
impact of choice constraints on solving generalizations of the 0–1 knapsack prob-
lem using the integer programming option of cplex®’, Engineering Optimization
52(9), 1632–1644.

Martello, S., Pisinger, D. and Toth, P. (1999), ‘Dynamic programming and strong
bounds for the 0-1 knapsack problem’, Management science 45(3), 414–424.

McAndrew, F. (2020), ‘Adiabatic quantum computing to solve the maxcut graph
problem’, University of Melbourne School of Mathematics .

McTavish, H., Zhong, C., Achermann, R., Karimalis, I., Chen, J., Rudin, C. and
Seltzer, M. (2022), Fast sparse decision tree optimization via reference ensembles,
in ‘Proceedings of the Thirty Sixth AAAI Conference on Artificial Intelligence’,
pp. 9604–9613.

Muñoz, M. A. and Smith-Miles, K. (2020a), ‘Generating new space-filling test
instances for continuous black-box optimization’, Evolutionary computation
28(3), 379–404.

Muñoz, M. A. and Smith-Miles, K. (2020b), ‘Instance space analysis: A toolkit for
the assessment of algorithmic power.’.
URL: https://doi.org/10.5281/zenodo.4484107

Muñoz, M. A., Villanova, L., Baatar, D. and Smith-Miles, K. (2018), ‘Instance spaces
for machine learning classification’, Machine Learning 107(1), 109–147.

Muñoz, M. A., Yan, T., Leal, M. R., Smith-Miles, K., Lorena, A. C., Pappa, G. L.
and Rodrigues, R. M. (2021), ‘An instance space analysis of regression problems’,
ACM Transactions on Knowledge Discovery from Data (TKDD) 15(2), 1–25.

Orlin, J. B. (1997), ‘A polynomial time primal network simplex algorithm for mini-
mum cost flows’, Mathematical Programming 78(2), 109–129.

Pisinger, D. (2005), ‘Where are the hard knapsack problems?’, Computers & Opera-
tions Research 32(9), 2271–2284.

Reeves, C. R. (1999), ‘Landscapes, operators and heuristic search’, Annals of Opera-
tions Research 86, 473–490.

123

Reilly, C. H. (2009), ‘Synthetic optimization problem generation: show us the corre-
lations!’, INFORMS Journal on Computing 21(3), 458–467.

Rice, J. R. (1976), ‘The algorithm selection problem’, Advances in Computers 15, 65–
118.

Romeijn, H. E. and Morales, D. R. (2001), ‘A probabilistic analysis of the multi-period
single-sourcing problem’, Discrete applied mathematics 112(1-3), 301–328.

Rudin, C. (2019), ‘Stop explaining black box machine learning models for high
stakes decisions and use interpretable models instead’, Nature machine intelligence
1(5), 206–215.

Scherer, M., Hill, R. R., Lunday, B. J., Cox, B. A. and White, E. D. (2023a), ‘Instance
based configuration for metaheuristic selection’, Computers & Operations Research
. Under Second Review.

Scherer, M., Hill, R. R., Lunday, B. J., Cox, B. A. and White, E. D. (2023b), ‘Veri-
fying new instances of the multidemand multidimensional knapsack problem with
instance space analysis’, Computers & Operations Research . Under Second Review.

Smith-Miles, K. (2019), ‘Matilda: melbourne algorithm test instance library with
data analytics’, URL: https://matilda.unimelb.edu.au .

Smith-Miles, K. A., James, R. J., Giffin, J. W. and Tu, Y. (2009), A knowledge discov-
ery approach to understanding relationships between scheduling problem structure
and heuristic performance, in ‘Learning and Intelligent Optimization: Third Inter-
national Conference, LION 3, Trento, Italy, January 14-18, 2009. Selected Papers
3’, Springer, pp. 89–103.

Smith-Miles, K. and Baatar, D. (2014), ‘Exploring the role of graph spectra in graph
coloring algorithm performance’, Discrete Applied Mathematics 176, 107–121.

Smith-Miles, K., Baatar, D., Wreford, B. and Lewis, R. (2014), ‘Towards objective
measures of algorithm performance across instance space’, Computers & Operations
Research 45, 12–24.

Smith-Miles, K. and Bowly, S. (2015), ‘Generating new test instances by evolving in
instance space’, Computers & Operations Research 63, 102–113.

Smith-Miles, K., Christiansen, J. and Muñoz, M. A. (2021), ‘Revisiting where are the
hard knapsack problems? via instance space analysis’, Computers & Operations
Research 128, 105184.

Smith-Miles, K. and Lopes, L. (2012), ‘Measuring instance difficulty for combinatorial
optimization problems’, Computers & Operations Research 39(5), 875–889.

124

Smith-Miles, K. and Muñoz, M. A. (2021), ‘Instance space analysis for algorithm
testing: Methodology and software tools’.

Song, M. S., Emerick, B., Lu, Y. and Vasko, F. J. (2022), ‘When to use inte-
ger programming software to solve large multi-demand multidimensional knapsack
problems: a guide for operations research practitioners’, Engineering Optimization
54(5), 894–906.

Toyoda, Y. (1975), ‘A simplified algorithm for obtaining approximate solutions to
zero-one programming problems’, Management Science 21(12), 1417–1427.

Wolpert, D. H. and Macready, W. G. (1997), ‘No free lunch theorems for optimiza-
tion’, IEEE Transactions on Evolutionary Computation 1(1), 67–82.

125

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704–0188

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including
suggestions for reducing this burden to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704–0188), 1215 Jefferson Davis Highway,
Suite 1204, Arlington, VA 22202–4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection
of information if it does not display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD–MM–YYYY) 2. REPORT TYPE 3. DATES COVERED (From — To)

4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

6. AUTHOR(S)

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION REPORT
NUMBER

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION / AVAILABILITY STATEMENT

13. SUPPLEMENTARY NOTES

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF:

a. REPORT b. ABSTRACT c. THIS PAGE

17. LIMITATION OF
ABSTRACT

18. NUMBER 19a. NAME OF RESPONSIBLE PERSON

19b. TELEPHONE NUMBER (include area code)

Standard Form 298 (Rev. 8–98)
Prescribed by ANSI Std. Z39.18

20–07–2023 Dissertation March 2020 — September 2023

Test Problem Generation and Metaheuristic Selection for the
Multidemand Multidimensional Knapsack Problem

Scherer, Matthew E., Capt, USAF

Air Force Institute of Technology
Graduate School of Engineering and Management (AFIT/EN)
2950 Hobson Way
WPAFB OH 45433-7765

AFIT-ENS-DS-23-S-020

Agency of Command Name
POC Rank & Name within Agency
Street Address
City, ST ZIP
email of agency POC

Distribution A: Approval for public release; distribution is unlimited.

This work focuses on instance generation methods for the multi-demand multidimensional knapsack problem (MDMKP).
Specifically, instance space analysis (ISA) is used to characterize the landscape of existing instances and validate the
novelty of new instances generated with a novel problem generation method, the primal problem instance generator
(PPIG). The instance generator is capable of producing feasible, diverse, and challenging instances by directly controlling
the problem features. PPIG contributes to the previous collections of instances and is validated through instance space
analysis. The research presents an in-depth empirical evaluation of existing solution procedures for the MDMKP. The
portfolio of metaheuristics examined show promising performance on existing benchmark libraries but lack robustness
when the test set of instances are extended using the PPIG method. A machine learning classifier is employed to provide
an interpretable link between instance configuration and solution procedure performance. The final aspect of the research
is an optimization framework used to provide problem generation parameters to the PPIG methodology to further cover
the instance space for the full suite of MDMKP test problems.

Multidemand multidimensional knapsack problem (MDMKP), empirical testing, instance space analysis, instance
generation, algorithm selection problem

U U U UU

OF
PAGES

139
Dr. Brian J. Lunday, AFIT/ENS

(937) 255-3636, x4624; brian.lunday@afit.edu

This work is declared a work of the U.S. Government and is not subject to copyright protection in the United States.

	Test Problem Generation and Metaheuristic Selection for the Multidemand Multidimensional Knapsack Problem
	Recommended Citation

	Abstract
	Dedication
	Acknowledgements
	List of Figures
	List of Tables
	Introduction
	Motivation
	Complexity
	Instance Generation

	Research Objectives and Scope
	Organization of the Dissertation

	Analyzing Problem Instances of the Multidemand Multidimensional Knapsack Problem with Instance Space Analysis
	Introduction
	Instance Space Analysis
	Problem Space
	Subspace of Instances
	Algorithm Space
	Performance Space
	Feature Space

	The Instance Space
	Augmenting the Instance Space

	Feasibility Considerations on Robust Problem Construction
	Feasible Instance Generation
	Analysis of Feasible Instances

	Conclusion

	Instance Based Configuration for Metaheuristic Selection
	Introduction
	Instance Space Analysis
	Algorithm Selection Problem
	Problem Space
	Subset of Instances
	Algorithm Space
	Performance Space
	Feature Space
	Instance Space

	Metaheuristic Selection Problem
	Results
	Conclusion

	An Optimization Framework for Filling the Instance Space of Multidemand Multidimensional Knapsack Problems
	Introduction
	Literature Review

	Problem Description
	Methodology
	Results
	Discussion
	Updating the Instance Space

	Conclusion

	Conclusion
	Summary
	Future Work

	Distribution of Features Across Instance Spaces
	Bibliography

