
Air Force Institute of Technology Air Force Institute of Technology

AFIT Scholar AFIT Scholar

Theses and Dissertations Student Graduate Works

9-2023

Analysis of Multi-agent Routing Solution Methodologies Exploring Analysis of Multi-agent Routing Solution Methodologies Exploring

a Mosaic Warfare Strategy a Mosaic Warfare Strategy

Stephen D. Donnel

Follow this and additional works at: https://scholar.afit.edu/etd

 Part of the Operations Research, Systems Engineering and Industrial Engineering Commons

Recommended Citation Recommended Citation
Donnel, Stephen D., "Analysis of Multi-agent Routing Solution Methodologies Exploring a Mosaic Warfare
Strategy" (2023). Theses and Dissertations. 7664.
https://scholar.afit.edu/etd/7664

This Dissertation is brought to you for free and open access by the Student Graduate Works at AFIT Scholar. It has
been accepted for inclusion in Theses and Dissertations by an authorized administrator of AFIT Scholar. For more
information, please contact AFIT.ENWL.Repository@us.af.mil.

https://scholar.afit.edu/
https://scholar.afit.edu/etd
https://scholar.afit.edu/graduate_works
https://scholar.afit.edu/etd?utm_source=scholar.afit.edu%2Fetd%2F7664&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/305?utm_source=scholar.afit.edu%2Fetd%2F7664&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.afit.edu/etd/7664?utm_source=scholar.afit.edu%2Fetd%2F7664&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:AFIT.ENWL.Repository@us.af.mil

ANALYSIS OF MULTI-AGENT ROUTING
SOLUTION METHODOLOGIES EXPLORING

A MOSAIC WARFARE STRATEGY

DISSERTATION

Stephen D. Donnel, Capt, USAF

AFIT-ENS-DS-23-S-014

DEPARTMENT OF THE AIR FORCE
AIR UNIVERSITY

AIR FORCE INSTITUTE OF TECHNOLOGY

Wright-Patterson Air Force Base, Ohio

Distribution Statement A
Approved for Public Release; Distribution Unlimited.

The views expressed in this document are those of the author and do not reflect the
official policy or position of the United States Air Force, the United States Department
of Defense or the United States Government. This material is declared a work of the
U.S. Government and is not subject to copyright protection in the United States.

AFIT-ENS-DS-23-S-014

ANALYSIS OF MULTI-AGENT ROUTING SOLUTION METHODOLOGIES

EXPLORING A MOSAIC WARFARE STRATEGY

DISSERTATION

Presented to the Faculty

Graduate School of Engineering and Management

Air Force Institute of Technology

Air University

Air Education and Training Command

in Partial Fulfillment of the Requirements for the

Degree of Doctor of Philosophy

Stephen D. Donnel, BS, MS

Capt, USAF

September 14, 2023

Distribution Statement A
Approved for Public Release; Distribution Unlimited.

AFIT-ENS-DS-23-S-014

ANALYSIS OF MULTI-AGENT ROUTING SOLUTION METHODOLOGIES

EXPLORING A MOSAIC WARFARE STRATEGY

DISSERTATION

Stephen D. Donnel, BS, MS
Capt, USAF

Committee Membership:

Dr. Brian J. Lunday
Chair

Capt Nicholas T. Boardman, PhD
Member

Maj Brigham A. Moore, PhD
Member

AFIT-ENS-DS-23-S-014

Abstract

Recognizing that communication between assets may be possible locally but not

globally (e.g., due to disruptions to a communication network), Mosaic Warfare re-

quires the movement and operation of multiple, dispersed assets in smaller groups (i.e.,

tiles), within which exist hierarchical, functional relationships between assets. This

research sets forth and evaluates a Hierarchical Asset Tiling and Routing Heuristic

(HATRH) to implement Mosaic Warfare for an enterprise of aerial assets comprised

of airborne sensors, command and control aircraft, and strike aircraft seeking to move

towards and destroy a set of stationary targets. The HATRH is comprised of three,

iteratively applied algorithms: a grouping algorithm to group assets into functional

tiles, and two algorithms respectively related to group movement and individual asset

movement. Embedded within the latter two algorithms are user-determined parame-

ters that roughly correspond to group and individual asset agency within the mosaic.

Extensive testing examined the effect of these parameters and asset density for three

different operational scenario designs, and with comparison to optimal (i.e., efficient)

asset utilization via two Price of Anarchy (POA) inspired metrics. Results showed the

user-defined parameter corresponding to individual asset agency notably influenced

both average munition expenditures and the average distance traveled by assets. In

the scenario wherein assets initially surround adversary targets, both the individual

and group agency user-defined parameters influence operational efficiency, in terms

of munitions expended and fuel consumed.

Proceeding, the next research examines the problem of routing multiple assets of

different types over a network to service demands in a collaborative manner. The

servicing is collaborative in that, when servicing a demand, the different types of

iv

assets must do so nearly simultaneously. Moreover, whereas some asset types must

service demands by visiting them, other asset types may provide service proximally.

This study sets forth a mixed-integer linear program to model this variant of a vehicle

routing problem. In addition to directly solving problem instances via a commercial

solver, this research proposes two permutations of a model decomposition heuris-

tic, as well as two preprocessing techniques to impose instance-specific bounds on

selected decision variables. Comparative testing evaluates nine combinations of so-

lution methods and preprocessing options to solve a set of 216 instances that vary

significant parameters. Results manifest trade-offs between the likelihood of find-

ing a feasible solution with bounded computational effort and the relative quality of

solutions identified. For larger networks, the preprocessing technique leveraging a

nearest neighbor heuristic in combination with any solution method most frequently

identified feasible solutions for the set of test instances (i.e., ∼90% of instances),

with lesser solution quality (i.e., within 15% of the best solutions identified, on av-

erage). Worst performing for larger networks was a model decomposition technique

that first routes assets providing service proximally, and omitting either preprocess-

ing technique; although this combination yielded the best solutions when it identified

a feasible solution, it only did so for ∼55% of instances. Other solution method

performances exhibit noteworthy nuance, as detailed herein.

Finally, research examines the problem of routing multiple assets of different types

over a network to service demands, where the demands must be serviced by asset types

in sequential order within a bounded amount of time, and minimizing the cumulative

service time is of interest. More specifically, this research seeks to identify effective

network disruption strategies with limited resources to maximize the minimal cumula-

tive service time. Within a bilevel programming structure for this Stackelberg game,

the upper-level problem determines the disruption strategy, and the lower-level prob-

v

lem routes the assets. This research considers and tests three soluton procedures: a

greedy construction heuristic (GCH) that iteratively identifies each disruptive action,

a customized implementation of simulated annealing (SA), and an enhanced variant

thereof (eSA) that leverages a prioritized identification of candidate solutions along

with a tabu list. Testing compares the solution methods on similar instances over a

range of selected algorithmic and instance-specific parameters. Results showed the

enhanced simulated annealing method to perform best, and extended testing explored

the effect of increasing selected problem sets on the relative improvement of eSA over

GCH, as well as its effect on algorithmic runtimes.

vi

Dedicated to my wife whose love and support are more infinite than the real

numbers. To my daughter and sons - may your quest for knowledge have no limit.

vii

Acknowledgements

I want to express my utmost appreciation to my advisor Dr. Brian Lunday, for

his guidance throughout the development of this research. Another expression of

gratitude to committee members Dr. Boardman and Dr. Moore for their assistance

and input allowed this research to mold into its intended vision and application. Their

combined direction and mentoring made this body of work feasible. Finally, a sincere

thank you to my wife, who kept me focused, provided unparalleled encouragement,

and made everything possible.

Stephen D. Donnel

viii

Table of Contents

Page

Abstract . iv

Dedication . vii

Acknowledgements . viii

List of Figures . xi

List of Tables . xiii

I. Introduction . 1

1.1 Motivation and Background . 1
1.2 Research Objective and Scope . 7
1.3 Organization of the Dissertation . 8

II. Analysis of a Distributed Command and Control Algorithm
to Implement Mosaic Warfare . 10

2.1 Introduction . 10
2.1.1 Literature Review . 14
2.1.2 Statement of Contributions . 19

2.2 Solution Methodology . 20
2.2.1 Grouping Algorithm . 22
2.2.2 Tile Movement Algorithm . 24
2.2.3 Individual Asset Movement Algorithm. 26
2.2.4 Illustrative Application of an HATRH Iteration 29
2.2.5 HATRH Evaluation Metrics . 31

2.3 Testing, Results, and Analysis . 34
2.3.1 Testing Results for Scenario 1 . 37
2.3.2 Testing Results for Scenario 2 . 40
2.3.3 Testing Results for Scenario 3 . 42
2.3.4 HATRH Computational Run time . 45

2.4 Conclusions and Recommendations . 48

III. A Multiple Asset-type, Collaborative Vehicle Routing
Problem with Proximal Servicing of Demands . 50

3.1 Introduction . 50
3.1.1 Literature Review . 51
3.1.2 Statement of Contributions . 53

3.2 Model Formulation . 54
3.2.1 Modeling Assumptions . 54

ix

Page

3.2.2 Mathematical Program . 55
3.3 Solution Methodology . 59

3.3.1 Two-stage Model Decomposition Heuristic 61
3.3.2 Preprocessing Techniques to Bound Service

Time Window Shifts . 62
3.3.3 Maximal Decomposition Heuristic . 66

3.4 Testing, Results, and Analysis . 66
3.4.1 Illustrative CoVRP-PS Instance . 67
3.4.2 Test Instance Generation and Computational

Test Design . 70
3.4.3 Performance of Direct Optimization . 73
3.4.4 Comparative Testing Results on Tessellation

Induced Networks . 76
3.5 Conclusions and Recommendations . 84

IV. A Stackelberg Framework for Disrupting Coordinated,
Multi-asset Routing and Sequential Servicing of Demands 86

4.0.1 Literature Review . 88
4.0.2 Statement of Contributions . 93

4.1 Model Formulation and Solution Methodology . 94
4.1.1 Model Formulation . 94
4.1.2 Solution Methodology . 100

4.2 Testing, Results, and Analysis . 109
4.2.1 Illustrative Example . 110
4.2.2 Parameter Exploration . 112
4.2.3 Comparative Testing of Solution Methods 114
4.2.4 Selected Excursional Analyses . 117

4.3 Conclusions and Recommendations . 123

V. Conclusions and Future Recommendations . 125

Bibliography . 128

x

List of Figures

Figure Page

1 Guide to Finding Optimal Movement Point . 28

2 HATRH Single Iteration Walkthrough . 30

3 Illustrative depiction of Scenarios 1-3 for relative
disposition of initial asset and target locations . 36

4 HATRH-implemented Mosaic Warfare performance for
Scenario 1, over 30 instances of each of 228
combinations of relative asset congestion, φ, and λ 38

5 The effect of λ on HATRH-implemented Mosaic Warfare
performance for Scenario 1, over 30 instances of each of
228 combinations of relative asset congestion, φ, and λ 40

6 HATRH-implemented Mosaic Warfare performance for
Scenario 2, over 30 instances of each of 228
combinations of relative asset congestion, φ, and λ 41

7 HATRH-implemented Mosaic Warfare performance for
Scenario 3, over 30 instances of each of 228
combinations of relative asset congestion, φ, and λ 43

8 HATRH-implemented Mosaic Warfare performance for
Scenario 3, in relatively high congestion (level 70), of φ,
and λ . 43

9 Asset movement parameter (λ) versus average POAasd
and POAme differentiated by relative asset congestion 45

10 Average Computational Time of HATRH by Scenario
Relative to λ . 46

11 Solution methodology flowchart . 60

12 Illustrative Instance Network and Optimal Asset Routing 68

13 Example Test Network and Placement of Demand
Nodes and Assets . 72

14 Average Performance of 9 Solution Methods over All
Test Instances . 77

xi

Figure Page

15 Model Comparison Based on Number of Nodes |N | 80

16 Model Comparison Based on Number of Assets Routed 82

17 Most Challenging Instances Explored . 83

18 Illustrative Example: Hexagonal Mesh, Initial Asset
Locations, and Demand Node Locations . 110

19 Example Model Execution . 111

20 Annealing Temperature as a function of T0 and β 113

21 Annealing Temperature for T0 = 5 as a function of β 117

22 Modified Illustrative Example: Hexagonal Mesh, Initial
Asset Locations, and Demand Node Locations . 118

23 Example Model Execution Additional Assets . 119

24 Illustrative Example: 3 Asset Types . 121

25 Example Model Execution |Ψ| = 3 . 122

xii

List of Tables

Table Page

1 Computational Exploration of the HATRH . 47

2 Demand-specific Characteristics for the Optimal
Solution to the Illustrative Instance . 69

3 Number of Arcs Travel Per Time Period . 70

4 Varied Problem Parameters and Levels Explored for the
Designed Experiment . 73

5 CoVRP-PS Testing Results for
(|K1|, |K2|, |K3|) = (2, 2, 1) . 75

6 CoVRP-PS Testing Results for
(|K1|, |K2|, |K3|) = (4, 4, 2) . 75

7 Model Abbreviation Guide . 76

8 Solution Methods Examined . 102

9 Demand Service Times with No Delays . 112

10 Demand Service Times with GCH-identified η = 5
Disruptive Actions . 112

11 Values to Explore . 112

12 Probability of Accepting Worse Candidate Solution (%)
via Equation 55 . 113

13 Objective Function Values for Solutions Identified via
the Greedy Construction Heuristic . 114

14 Best Objective Function Value after 45 Iterations for
the SA and eSA Algorithms . 115

15 Best Objective Function Value after 45 Iterations for
the SA and eSA Algorithms in the Absence of
Annealing, i.e., with Fixed Probability p of Accepting a
Worse Candidate Solution . 115

16 Instances (%) for which eSA performed as well or better
than SA . 116

xiii

Table Page

17 Best Objective Function Value after 45 Iterations for
the SA and eSA Algorithms with T0 = 5 and β = 0.075 118

18 Best objective function values identified via GCH and
eSA after 45 iterations with (T0, β) = (5, 0.05) for the
instance depicted in Figure 22 with |K1| = |K2| = 2, for
increasing η-values . 119

19 Best objective function values identified via GCH and
eSA after 45 iterations with (T0, β) = (5, 0.05) for the
instance depicted in Figure 24 with |Ψ| = 3 asset types,
for increasing η-values . 123

xiv

ANALYSIS OF MULTI-AGENT ROUTING SOLUTION METHODOLOGIES

EXPLORING A MOSAIC WARFARE STRATEGY

I. Introduction

1.1 Motivation and Background

Defense analysts for decades have theorized that enemy forces would employ

strategies in anti-access to hinder the deployment of U.S. forces and assets and to

disrupt communication amongst command structures. China’s military investments

affirm their status as a potential adversary with the ability to utilize such techniques

that limit the locations of U.S. forces or compel them to operate at a greater dis-

tance from the focal point (e.g., targets) within a kinetic conflict (Cliff et al., 2007).

Adversaries of the U.S. can asymmetrically focus weapons and concept developments

on attacking vulnerable nodes in U.S. military operations (Dougherty, 2019). For in-

stance, China intends to utilize anti-access/area denial (A2/AD) measures to achieve

strategic effects that disrupt U.S. operations by making critical communications, com-

mand, and control networks ineffective (Deptula et al., 2019). Degrading the U.S.

military’s ability to operate and communicate efficiently portends an unraveling of

security guarantees by the United States to its allies and partners. In turn, under-

mined confidence in U.S. security assurances can undermine these relations critical

to the established global order (Dougherty, 2019).

Deptula et al. (2019) stresses the importance of military planners differentiating

between the warfighting strategies of Russia and China, despite their common A2/AD

design methodology focusing on countering America’s military power. Russia plans

1

to use A2/AD systems in a war of attrition, protecting its operations from external

threats or intruders (Barrie, 2019). Russia has demonstrated during military exer-

cises the integration of long-range surface-to-air missiles (SAMs) and medium-range

ballistic missiles, effectively creating an aerial minefield for enemy aircraft attempting

to penetrate Russia-controlled airspace (Cabot, 2018). The past decades have shown

China increasing capabilities of its core A2/AD technology, including ground and

air defense systems, next-generation tactical aircraft, electronic warfare, and high-

precision missiles (Yevtodyeva, 2022). China has adopted a strategy poised at using

A2/AD to attack the network and communications elements of the U.S. military

forces. By preventing command-and-control (C2) and Intelligence, Surveillance, and

Reconnaissance (ISR) assets from getting close to a region of active conflict, China can

significantly degrade the capability of the U.S. system (Deptula et al., 2019; Fravel,

2016). A conflict with China would put U.S. forces against the Chinese “system-

of-systems paralysis” strategy, designed to target an adversary’s C2 and interrupt

the American battle network at all levels (Costello et al., 2016; Deptula et al., 2019;

Pickrell, 2019).

Where sharing information via a communication network has been extolled as

a virtue, adversaries have evolved to exploit this reliance by attacking key commu-

nication nodes in the U.S. force network, negating their ability to maneuver and

communicate effectively (Colby, 2019; Deptula et al., 2019). Moreover, these global

powers have observed the U.S. military’s strategy as being both reluctant and slow to

change from the “Desert Storm model,” where any opponent could be dominated by

leveraging the massive technical advantages (e.g., integrated communication network,

global positioning system, precision-guided munitions) the U.S. began developing in

the 1970s. This strategy held abundant before the 2010s when the U.S. lacked a con-

temporary military competitor. Now, A2/AD systems can create exploitable openings

2

in the current way the U.S. fights, creating vulnerabilities to attack with rapidly de-

ployable and heavily armed conventional forces (Colby, 2019). The advancements in

technology and strategy by China and Russia now threaten critical infrastructure in

U.S. and allied bases, air defense, and critical logistical nodes. Modern force struc-

tures rely on sharing information in real-time to update forces with better operational

awareness to close kills chains (Deptula et al., 2019).

The changing environment of war has forced the United States to adopt new evo-

lutionary strategies and tactics to prevail in future peer-to-peer contests. The most

significant threats to the security interest of America and its allies are the growing

powers of China and Russia and their revisionist ambitions. Chinese and Russian

strategies use A2/AD against the United States and their allies to prevent any in-

tervening attacks against their aggressions (Deptula et al., 2019). Future wars will

focus on information and decision-making capabilities. The battle network will con-

centrate on electronically and physically degrading an opponent’s ability to obtain

accurate information while introducing false information, destroying their ability to

orient and attack or defend. Technology advancements in artificial intelligence (A.I.)

also force the need for more advanced strategies and warfare. Decision-centric warfare

may become the most effective method of exploiting A.I. and autonomous systems,

quickly emerging throughout the battlefield. Defense Advanced Research Project’s

Agency’s (DARPA’s) decision-centric warfare example, Mosaic warfare, centralizes

itself on many components of manned and autonomous units, guided by human con-

trol, can adapt to complex situations and dispute enemy centers of gravity, preventing

further aggression (Clark et al., 2021). Sensing and targeting grids will need to be

able to find, identify, and track any vehicles associated with enemy invasion or threat

of communications jamming. Additionally, grid changes must adapt autonomously,

nominating and guiding systems where links are temporarily severed (Ochmanek,

3

2022).

Mosaic Warfare owes its namesake to how smaller force structures elements can

be rearranged into different configurations, similar to how mosaic artwork comprises

different shaped tiles that form an overall image. Conceptually, a Mosaic Warfare

force employs disjoint assets and platforms to formulate an operational system with-

out requiring a single C4I system that networks all components. The artwork, or

operational warfare design, is the larger picture resulting from the decentralized or-

chestration – an oxymoron, to be sure – of the capabilities of platforms like combat

aircraft, including radar, fire control, and missiles (Deptula et al., 2019). The in-

dividual pieces of the mosaic come together to form the complete picture, in this

case, a force plan. Burns, the previous director of DARPA’s Strategic Technology

Office, merits credit for advancing the concept of Mosaic Warfare within the U.S.

Department of Defense. He identifies a key strategy of the Mosaic Warfare design: to

overwhelm enemy forces by utilizing large amounts of sensor and weapon platforms.

Burns said, “When you attack in parallel across a wide front and you have distributed

your sense-decide-and-act systems across a wide number of platforms, you can mass

your firepower without having to mass your forces” (DARPA Tiles Together a Vision

of Mosaic Warfare, 2020).

Currently, analysts are researching systems warfare from the view of the Chinese

People’s Liberation Army’s (PLA) understanding of systems on systems warfare, in-

cluding the current warfare tactics and planner military strategy (Engstrom, 2018).

Outlined are four types of targets that PLA planners will seek to strike through ki-

netic or non-kinetic attacks to incapacitate a foe’s operation systems: (1) degrading

the flow of information, (2) target key nodes or functionalities, (3) disrupting the

operational architecture of the enemy’s operation system, and (4) disruption the time

sequence of adversary’s tempo (Engstrom, 2018). Given its potentially disruptive

4

nature against the U.S. military’s hegemony, systems confrontation may evolve into

the new warfighting tactic adopted by many and not limited to China. In the ab-

sence of change to their current employment concepts, U.S. forces cannot successfully

prosecute the goals outlined in the National Defense Strategy (Mattis, 2018). The

innovative employment concepts of Mosaic Warfare utilizes existing U.S. forces and

better employ them for the system warfare of the future (Deptula et al., 2019).

Mosaic Warfare proposes more diverse courses of action (COA) to a force, com-

bined with command and control (C2), that provides options for rapid, decentralized

decision-making to make fast and effective decisions. The effectiveness of Mosaic

Warfare arises from the force’s disaggregated structure, combined with the use of

human command and machine control, complicating an opponent’s decision-making

process into an insoluble collection of dilemmas (Clark et al., 2021). The concepts

behind Mosaic Warfare seek to eventually address the current force’s shortcomings.

These shortcomings include but are not limited to small inventories of capable high-

end multi-function platforms, long development time to field major weapon systems,

and current force design not being able to withstand attrition (Deptula et al., 2019).

In addition, enemy forces are becoming more aggressive, with China expressing the

intent to be able to take Taiwan by force by the year 2027 (LaGrone, 2021). The

Mosaic Warfare force design aims to gain offensive initiative against the enemy while

remaining adaptive throughout the military operational spectrum to create a kill web

of numerous components. These components become designed to minimize targetable

friendly nodes while ensuring the military unit remains effective in a contested envi-

ronment (Deptula et al., 2019).

The rebuttal for a systems warfare strategy is to remove single points of failure,

avoid the single data link, and strategize away from a standard operational formation

in which enemy forces can concentrate their plans. A force employing Mosaic War-

5

fare creates this counter, networking together disaggregated forces that to increase

effectiveness of U.S. forces, expand the kill paths, which are the paths necessary for

allied assets to reach desired targets, and leave the adversary unable to establish its

next target decisions (Deptula et al., 2019). Burns summarized Mosaic Warfare well,

characterizing the dynamics of interconnected systems by stating, “Why don’t we

take simpler systems and then network them together, have them share, collaborate

sense their world in their own unique way – and put them together?” (DARPA Tiles

Together a Vision of Mosaic Warfare, 2020).

Mosaic Warfare creates a comprehensive model for systems whose attributes can

help increase the speed of action across the U.S. military enterprise. Moreover, the

principles and technologies that develop a force design deliberately tailored for Mosaic

Warfare will enable the U.S. to stay competitive against adversaries in future system

warfare. The fundamentals of Mosaic Warfare entail the disaggregated information

sharing related to radar, fire control, and missiles into smaller elements rather than

hosting them on a common platform for centralized command and control. This

transforms the kill chain from a linear kill chain to a networked web of individual

components making up the larger operations design – the mosaic (Deptula et al.,

2019).

However, current weapon systems are not designed to operate this way, preventing

a transition to a Mosaic Warfare strategy. The weapons of the modern military are

designed to fit into a puzzle, similar to a jigsaw piece, designed to fit into one place

of need, not the tile of a mosaic, designed to be interchanged and reassembled as the

need of the battlefield alters and changes (DARPA Tiles Together a Vision of Mosaic

Warfare, 2020). The future of the U.S. force design needs to be adjusted to overcome

future challenges and current shortfalls. First, the U.S. military has become reliant

on a disproportionate number of competent, multi-functioning platforms serving as

6

valuable adversary targets. Losing a small number of these aircraft is detrimental to

the current operational structure (Deptula et al., 2019). Second, the current buying

trend of the U.S. military has become vastly inefficient, where the fighter aircraft fleet

has halved, and the bombers dropped to a fifth of what they were two decades ago

(Kass, 2019). Third, as specialized and robustly engineered machines are designed,

the U.S. military needs to plan on buying them in more significant numbers to meet

the demand of a future system’s war eventually. Finally, the developmental process

and time frame to create and field new technologies necessary for tomorrow’s bat-

tlefield is too long. The problem is beyond an engineering or technological problem,

but one of bureaucratic processes and acquisition schedules (Deptula et al., 2019;

Schwartz, 2010).

1.2 Research Objective and Scope

Mosaic Warfare will require more than new technologies. It will also require a

study of its operational concepts to examine the effectiveness of smaller, adaptive

command and control structures to direct subsets of assets within missions. Addi-

tionally, it will require a complex understanding of routing and movement dynamics

and the protocols necessary for a semi-autonomous fleet of vehicles with specialized

capabilities to collaborate and move throughout a network or spatial region. Overall

specific objectives of this research are the ability to detect and observe targets with

Intelligence, Surveillance, and Reconnaissance (ISR) aircraft, process intelligence, and

direct action via command and control (C2) aircraft, and attack targets using strike

aircraft. Some of the aircraft may be multi-role, but all of the aircraft will fly in a

network-contested environment, so it is of interest to both centrally plan their routes

and adapt those plans in a decentralized manner when anticipated conditions change

and disruption within the C2 network, leaving communication only possible between

7

relatively proximal assets.

This research will explore routing multiple vehicle types with specialized roles vis-

á-vis a Mosaic Warfare style decentralized operation with centralized control. The

first objective is to investigate the dynamic between assets moving as a group, or

tile in a grand mosaic, and their individual asset agency, exploring how movement

limitations affect other factors in the operations such as munitions expense and fuel

cost. Next, determine solution methods to develop and explore solution discovery

and quality of routing multiple agents in a collaborative environment as commercial

solvers struggle to find feasible solutions in larger operational instances. A subsequent

objective investigates the relationship between assets attempting to satisfy demand

on predetermined target locations while traversing a contested network, where an

adversary can delay the routing and movement speeds of assets.

1.3 Organization of the Dissertation

Within the remainder of this paper, Chapter II presents a Hierarchical Asset Tiling

and Routing Heuristic to implement Mosaic Warfare for an enterprise of aerial assets,

which has two user-determined parameters embedded within to roughly correspond

to group and individual asset agency with the mosaic. Chapter III develops a mixed-

integer linear program to route multiple asset type vehicles collaboratively, in that

they much service demand in a near simultaneous manner, wherein some asset types

require direct delivery to defined demand node and other asset types provide service

proximally. Next, Chapter IV examines a bilevel problem to model a Stackelberg

game, wherein the lower-level problem minimizes cumulative servicing times while

routing assets. At the same time, the upper-level simultaneously adapts a strategy

to impose a limited number of disruptive actions to slow down multiple assets be-

ing routed on the network. Finally, Chapter V concludes the research and suggests

8

meaningful future excursions.

9

II. Analysis of a Distributed Command and Control
Algorithm to Implement Mosaic Warfare

2.1 Introduction

Within the global community, the United States (U.S.) has the greatest expendi-

ture on its armed forces (Szmigiera, 2022) and is habituated to the idea that sheer

military superiority will deter conflict. However, recent conflicts and enemy strategic

performances have shown that a future war involving the U.S. may be inevitable, and

a military loss could be possible (Dougherty, 2019). To win, the U.S. must focus on

revitalizing its warfighting strategy because potential adversaries are carefully design-

ing warfare systems to counter its contemporary methodology of warfare that relies

on secure, networked communications (Fravel, 2016).

The U.S. military has become increasingly reliant on the network warfare it has

been building in the past years, confident that information sharing would remain

present throughout the network, enabling the centralization of operational control.

Moreover, the lack of a peer adversary for many years established the belief that U.S.

forces would be able to retain control over all operational domains, including commu-

nication’s cyberspace. Such confidence developed the foundation for an information

network philosophy of conflict, one that inadvertently adopted an enormous amount

of vulnerability (Deptula et al., 2019).

The most significant threats to the security interest of America and its allies

are anti-access and area denial (A2/AD) strategies that prevent forces from entering

into or conducting sustained actions within an area of operations (Deptula et al.,

2019). Such A2/AD strategies threaten communications networks (Mulvenon et al.,

2006), and future wars will focus on information and decision-making capabilities.

The changing environment of war has forced the U.S. to consider new strategies and

10

tactics to prevail in future major theater conflicts.

Network warfare will concentrate on electronically and physically degrading an

opponent’s ability to obtain accurate information while introducing false information,

destroying their ability to orient and attack or defend. Technology advancements in

artificial intelligence (A.I.) already enable the use of decision-centric warfare that has

yet to be fully leveraged. Combined with A2/AD strategies by adversaries, a new

operational concept that leverages decision-centric warfare to mitigate the effects of

an A2/AD strategy is necessary. Defense Advanced Research Project’s Agency’s

(DARPA’s) decision-centric warfare proposal, Mosaic Warfare, is designed to utilize

components of manned and autonomous units, guided by human control, and can

adapt to complex situations and dispute enemy centers of gravity, preventing further

aggression (Clark et al., 2021).

Mosaic Warfare acknowledges the effect of an A2/AD environment and sets aside

contemporary assumptions about communications that allow for centralized com-

mand and control of assets, instead leveraging local or proximal command and control

of assets with a decentralized execution of a mission. Such an approach is different

from the current Department of Defense doctrine for employing aircraft that relies

on centralized planning and executing an Air Tasking Order (United States Joint

Chiefs of Staff, 2021). In art, a painting or puzzle that is missing a piece is not

whole; the absence visibly detracts from the work. In contrast, a mosaic is comprised

of many individually-designed, simple tiles; their aggregation yields a work of art

in the grand mosaic, even if one or more tiles are damaged or missing. Borrowing

this paradigm, DARPA’s strategic technology office (STO) compares contemporary

doctrinal employment of aircraft to a jigsaw puzzle, wherein the loss of one piece

damages the entire image (Magnuson, 2018). Mosaic Warfare mitigates this effect

by leveraging functional tiles of warfighting platforms within a larger force package

11

(O’Donoughue et al., 2021; Sapaty, 2019). More specifically, Mosaic Warfare seeks

to form functional tiles of manned and unmanned aircraft, wherein each tile has the

needed capabilities to independently conduct part of an overall mission (Photonics

Media, 2019). Moreover, these tiles are dynamic. As the proximity between aircraft

changes – including with the addition or loss of aircraft – the number and composi-

tion of specific tiles evolve, retaining the functionality of both individual tiles and the

grand mosaic. Thus, the grand mosaic within Mosaic Warfare is resilient to aircraft

attrition, still capable of achieving operational success (DARPA News, 2017).

As an applied example, current air battle management in the US Air Force occurs

via the E-3 Airborne Warning and Control System (AWACS) (Hoehn, 2022). The

AWACS receives intelligence from intelligence, reconnaissance, and surveillance assets

and, in a centralized manner, directs other aircraft to engage adversary aircraft and

ground targets. If communications between the AWACS and other aircraft are dis-

rupted, effective command and control is disrupted, as is situational awareness across

the enterprise of assets. In contrast, air battle management within Mosaic Warfare

occurs in a decentralized manner. A manned aircraft such as the F-35 Lightning II

would communicate with and direct aircraft in relatively close proximity; the loss of

communications across the enterprise of aircraft need not disrupt the effectiveness of

local groups of aircraft, within which the hierarchical relationships of aircraft allow

it to function as an effective tile.

Mosaic Warfare embraced an adaptive framework for decentralized, proximal com-

mand and control to leverage asset capabilities, maintain tactical momentum, and

achieve military objectives in a communications-disrupted environment that prevents

both centralized command and control. Moreover, the principles and technologies

that develop a force design tailored to Mosaic Warfare will enable the U.S. to remain

competitive against adversaries in future system warfare (Deptula et al., 2019). The

12

fundamentals of Mosaic Warfare entail the disaggregated information sharing related

to radar, fire control, and missiles into smaller elements, rather than hosting them

on a common platform for centralized command and control. The kill chain, which

identifies the structure of attack into six phases (i.e., Find, Fix, Track, Target, En-

gage, Assess) (Tirpak, 2000), is implemented locally by smaller subsets of assets that

function as tiles and, in aggregate, achieve an intended outcome – the mosaic. Mosaic

Warfare’s goal is to transform the operation into a kill web by limiting the number of

critical nodes within the operational, decision-making network, allowing proximate,

smaller groups of assets to remain effective in contested regions. Of note, asset mem-

bership in a tile is not fixed; membership evolves as missions change, disruptions to

communications occur, or assets are rendered inoperative by an adversary (Deptula

et al., 2019).

Mosaic Warfare will require more than the new technologies, it will also need a

study of its operational concepts to examine the effectiveness of smaller, adaptive

command and control structures to direct subsets of assets within missions. This

research implements Mosaic Warfare for sets of semi-autonomous aircraft families

utilizing concepts from the literature related to hierarchical local modeling and vehicle

routing to plan and implement aerial strike missions. Missions of specific interest, each

of which is carried out by a different type of aircraft, are detecting and observing

targets with Intelligence, Surveillance, and Reconnaissance (ISR) aircraft; processing

intelligence and direct action via command and control (C2) aircraft; and attacking

targets using strike aircraft. Although multi-role aircraft are possible, this initial

research considers single-role aircraft operating in a network-contested environment,

so it is of interest to centrally plan their routes and adapt those plans in a decentralized

manner when anticipated conditions change. If the C2 network becomes disrupted

and feasible communication links are severed, disruption of information flow from

13

the sensor to strike asset must be addressed to maintain mission operation. The

challenge will be to determine how to route simultaneous actors ensuring desired

effects are achieved at targets while re-tasking and adapting rapidly as operational

changes occur (Deptula et al., 2019).

2.1.1 Literature Review

The network dynamic of Mosaic Warfare is the culmination of various related net-

works and routing disciplines. The following section discusses previous works relating

to location problems, primarily covering problems and hierarchical covering problems.

It then explores the related literature on routing, both within multi-agent and multi-

agent systems. Finally, grouping techniques to solve such problems are discussed,

along with metrics to benchmark the performance of decentralized operations.

The foundational structure of the perceived Mosaic Warfare network model is a

facility location problem because the purpose of grouping and moving assets is to

get them close enough to cover demands (i.e., targets), both by sensors to positively

identify the targets and strike aircraft to destroy them. Weber (1909) studied the

central problem of location theory, which involves determining the optimal path on

a plane to minimize the sum distance to n locations of interest. Generic facility

location problems investigate locating assets such that demand is satisfied. As a

convention common to several modeling frameworks, binary decision variables, xij,

indicate whether a demand at location i has its demand fulfilled by a facility at lo-

cation j, with an associated cost, cij. A binary variable yj denotes the decision to

emplace a facility at location j, at the cost of fj, with a bound of the possible demand

that can be serviced, uj (Dimitri, 1998). Should the number of customers served be

unbounded, allowing any number of demands to be served by a facility, the problem

is an uncapacitated facility location problem (UFLP). Alternatively, a capacitated fa-

14

cility location problem (CFLP) is bounded by the amount of customer demand that a

facility location can fulfill. Both UFLP and CLFP are Non-Deterministic Polynomial-

hard (NP-hard) problems (Wu et al., 2006). Extensions of the classic facility location

problem have included adding additional new locations to an already existing network

by simply adding the new facilities with given interactions between themselves and

the demand assets in a multi-facility model (Miehle, 1958), or allocating each demand

node to a specific facility for service in a location-allocation model (Cooper, 1963).

Location problems are often solved as p-median problems, a subclass of the minisum

location models that focus on emplacing a fixed number of p facilities to minimize

the weighted average of all distances in the system (Drezner and Hamacher, 2004).

A subset of facility location problems are covering problems, formalized when

Hakimi (1965) investigated the minimum number of police officers necessary to dis-

tribute on a highway network such that no one would ever be more than d distance

away from a policeman. Schilling (1993) categorizes covering models as either location

set covering problems (LSCP) or maximal covering location problems (MCLP). The

LSCP minimizes the number (or cost) of facilities necessary such that all demands

are within a given distance of an emplaced facility. Alternatively, an MCLP attempts

to provide as much coverage as possible, given a limited number of facilities available

(Church and Murray, 2018). LSCP is appropriate where coverage is required, and

MCLP is better suited for a limited set of assets. (Farahani et al., 2012). Applica-

tions of such modeling frameworks include fire station location (Badri et al., 1998),

security camera placement (Yabuta and Kitazawa, 2008), cell phone coverage after a

natural disaster (Eiselt and Marianov, 2012), and other variants (e.g., see (Farahani

et al., 2012)).

The desired model to address the problem considered herein is a special case of

the set covering model, where assets maintain a hierarchical relationship based on a

15

defined, established relationship, i.e., C2 assets must cover ISR and strike assets for

information sharing and decision-making actions and, in turn, these assets must cover

the target(s) being attacked. Hierarchical facility location problems (HFLP) address

a multi-level network to determine the location of facilities and meet demand at the

lower level of the hierarchy to minimize cost and maximize coverage. Farahani et al.

(2014) details examples of models, classification, applications, and techniques of hi-

erarchical facility location problems. Hierarchical networks are used in the education

system to determine the number and locations of kindergartens, primary schools, and

high schools in a district. Emergency medical service systems emplace and operate

hierarchical facilities that administer different levels of medical treatment to the lo-

cal area. Hierarchical facility location problems are deeply rooted in the healthcare

field with studies to determine infirmaries, clinics, medical stations, and other health

care specialists in the system. The waste management system seeks to properly place

transfer stations, disposal centers, and landfill stations, which collectively manifest

such relationships. Finally, hierarchical models in the production-distribution sys-

tem usually exhibit different levels for factories, warehouses, and retail outlets, with

associated demand for each location (Farahani et al., 2014).

In addition to covering targets, a Mosaic Warfare model must route assets to the

demand locations. Dantzig and Ramser (1959) introduced some of the earliest routing

problems, which identified the optimal routes for a fleet of vehicles to deliver supply

to a set of customers. Whereas the Traveling Salesman Problem (TSP) is a routing

problem where a salesman seeks to visit every node on a network and return to the

starting node while minimizing distance, the Vehicle Routing Problem (VRP) consid-

ers multiple vehicles to service node-specific demands and with a carrying capacity

for each asset. Routing problems fall into the general class of network optimization

problems, the math programming formulation determines the complexity of the prob-

16

lem, which may be realized as the number of arcs and nodes (and possibly vehicles)

increase (Anbuudayasankar et al., 2016). Karp explored the complexity of Hamilto-

nian circuit problems, a variant of the TSP where one visits each node exactly once

before returning to the starting node (Karp, 1972). The TSP has been shown to

be NP-complete (Lenstra and Kan, 1976), whereas the VRP is NP-hard (Karp and

Papadimitriou, 1982).

The consideration of multiple agents routing simultaneously, each with its own set

of constraints, parameters, and goals, imposes additional complexity to the standard

VRP. The multiple vehicle routing problem (mVRP) consists of finding the optimal

paths for m vehicles from a single depot (Nallusamy et al., 2010). The multi-depot

vehicle routing problem further expands the VRP modeling framework, where vehicle

distribution expands to origination from several locations (e.g., see Jayarathna et al.

(2020)). The problem proposed herein studies three asset types (i.e., C2, sensor, and

strike), each of which has a unique initial location that is almost akin to a depot,

except the assets need not return to those points at the conclusion of the mission.

Because Mosaic Warfare entails the formation of tiles of assets into a functional

group – and periodic realignment of assets between tiles – en route to targets, it is

relevant to appreciate the need to leverage a grouping method. Methods such as the

k-means clustering algorithm have been utilized to group cities to solve mVRPs via

a decomposition of the problem to solve m single VRPs (Nallusamy et al., 2010).

Location-and-routing problems, which explore the location selection of facilities and

subsequent routing of vehicles to service demands, have utilized clustering techniques

to similarly decompose and simplify the problem structure, informing high quality

heuristics (Nadizadeh et al., 2011).

Formalized by Koutsoupias and Papadimitriou (Koutsoupias and Papadimitriou,

2009), the Price of Anarchy (POA) serves as an efficiency metric of a system with

17

decentralized decision-making, as compared to an “ideal” system with perfect infor-

mation, assured communications, and centralized decision-making. Thus, POA is

the measure of suboptimality introduced by the agents’ self-interested behavior. The

POA of a game is defined using a given notion of equilibrium (Nash equilibrium be-

ing popular in the literature) and an objective function, such as a summation of an

agent’s cost for utilizing a set of actions (Roughgarden, 2009). Defining actions at

equilibrium as x and the set of actions that globally minimizes the objective function

as x∗, the respective objective function values are denoted as f(x) and f(x∗). From

these computations, the POA metric is calculated as f(x)
f(x∗)

.

Assumed is that f(x∗) > 0, yielding a POA in [1, ∞). For problems wherein

f(x∗) can equal 0, POA is typically bounded artificially to be no less than 1. For a

decentralized routing problem where the agents act in their interest (e.g., see (Frank,

1981)), a value close to 1 indicates relatively little additional cost (i.e., anarchy) is

induced by the decentralized nature of the decision-making (Shoham and Leyton-

Brown, 2008). A variety of applications apply the POA metric, such as network

creations, where players create edges in a network to connect all parties while at-

tempting to minimize the total cost of building the final network and total distance

to all individuals participating (Fabrikant et al., 2003; Albers et al., 2014), similar to

road construction connecting nearby towns and villages. Perakis and Roels (2007)

utilized the POA to measure the efficiency of a decentralized supply chain that focuses

on price-only contracts by looking at the profits from a fully coordinated network to

one that is decentralized. Job scheduling has a history of leveraging a system’s POA

to measure the efficiency of scheduling policies (Czumaj et al., 2002; Ye et al., 2021).

Other recent works from literature utilized the POA for location and routing mod-

els, including multi-agent unmanned aerial vehicle (UAV) systems (Thakoor et al.,

2019). Although this study is not examining the efficiency loss on a network due

18

to self-interested agents in the system, the concept of a POA is useful to quantify

the relative inefficiencies of implementing Mosaic Warfare via the proposed solution

techniques and under different user-defined algorithmic parameters.

In its essence, Mosaic Warfare is a multi-agent control problem. A multi-agent

system considers an environment, a set of agents with an assembly of relations, opera-

tors, and taskings (Ferber and Weiss, 1999). However, it is unlike traditional problems

from that stream of literature because of the hierarchical relationships between as-

sets; although there is not centralized command and control, it is not completely

decentralized. Instead, Mosaic Warfare relies on regionally centralized command and

control, which occurs via C2 assets directing proximal assets within their respective

tiles. As such, this research builds upon the most relevant aspects within the litera-

ture pertaining to grouping, routing, and covering problems to implement and assess

this operational concept.

2.1.2 Statement of Contributions

This research makes the following two contributions. First, it develops and as-

sesses an algorithmic procedure to implement the Mosaic Warfare operational concept

via an iterative combination of asset grouping, asset routing, and demand coverage.

Complementary to this procedure are POA-like efficiency metrics to assess the rela-

tive cost of implementing Mosaic Warfare, as well as user-defined parameters relating

to the frequency with which tiles may be reformed and individual asset agency within

a tile. Second, for a set of representative scenarios within a designed experiment,

this research examines the effect of selected problem and algorithmic parameters on

solution efficiency via computational experiments.

The rest of this paper is organized as follows. Section 2.2 details the proposed

Hierarchical Asset Tiling and Routing Heuristic (HATRH) with specific discussion

19

regarding critical aspects of the HATRH, including how assets are grouped to ensure

Mosaic Warfare tiles are functional, how tiles vis-á-vis individual assets are moved,

and how-and-when targets may be covered. Section 2.3 introduces the test design of

parametric and algorithmic features as well as scenarios representing different spa-

tial relationships between initial asset and target locations, after which it presents

and analyzes the testing results. Section 2.4 concludes with a summary of garnered

insights and proposes directions in which to extend this research.

2.2 Solution Methodology

This research applies Mosaic Warfare to move friendly aircraft through a re-

gion wherein inter-asset communications are limited, to attacking a set of stationary

ground targets. Within this environment that precludes centralized command and

control of all assets but allows local command and control, the process of attacking a

target requires a functional tile or group. A functional tile requires at least one each

of a C2, sensor, and strike aircraft. To attack a target, at least one sensor aircraft

within the tile must be close enough to the target to positively identify it; at least

one strike aircraft must be close enough to the target to destroy it; and a C2 aircraft

must be close enough to both the sensor and strike aircraft to receive the positive

identification of the target, make a decision regarding how to destroy the target (e.g.,

what type of munition), and direct the strike aircraft to attack. Because decision-

making is central to a tile’s function, an application of Mosaic Warfare must form

(and iteratively reform) tiles around functioning C2 aircraft as a mission proceeds.

The algorithmic modeling implementation of selected aspects of Mosaic Warfare

proposed explores the routing of multiple single-role assets that form functional tiles

when grouped. Such routing procedures will explore the dynamic between focusing

on group and individual asset agency, where assets are encouraged to center priority

20

on group movement versus individual movement capabilities, respectively. As such,

the methodology presented relaxes limitations such as operational fuel and armament

capabilities, probability of kill modeling, and adversary opposition. Critical functions

in a mosaic system require identifying and routing potential assets along multiple and

simultaneous kill paths, ensuring desired effects are delivered, then re-tasking assets

appropriately (Deptula et al., 2019). As early quantitative analysis exploring Mosaic

Warfare in the literature, this algorithmic implementation of Mosaic Warfare makes

some simplifying assumptions to focus analysis on the relative efficiencies for selected

performance metrics.

As presented in Algorithm 1, the HATRH algorithm iteratively applies three pro-

cedures until there are no active targets (i.e., all targets destroyed). In Line 2, HATRH

invokes a Grouping Algorithm to form (or reform) tiles of proximal assets to ensure

each eligible C2 aircraft has at least one sensor and one strike within its tile. In

Line 3, HATRH applies a Tile Movement Algorithm to myopically advance all assets

within each tile towards its nearest target without coordination between tiles. In

Line 4, HCHR invokes an Individual Movement Algorithm to allow a bounded degree

of individual sensor and strike aircraft autonomy relative to their tile’s C2 aircraft.

Lines 5-9 check each active target against all tiles to determine if a sensor and strike

asset in the same functional tile are both within range. If at least one tile meets these

criteria, Line 7 removes the target from the active target list.

Before detailing each of the three subroutines invoked by HATRH, it is important

to define some notation commonly used by each of these algorithms and initially

characterize two user-defined HATRH parameters. Hereafter, the discussion uses

C2, S, St, and T to respectively denote the sets of C2 assets, sensor assets, strike

assets, and active targets, and it indexes individual assets within each set (e.g., C2i

references the ith C2 asset). The discussion will also leverage the notation φ and

21

Algorithm 1 Hierarchical Asset Tiling and Routing Heuristic

1: while number of active targets > 0 do
2: Perform Grouping Algorithm . Section 2.2.1, Algorithm 2
3: Perform Tile Movement Algorithm . Section 2.2.2, Algorithm 3
4: Perform Individual Movement Algorithm . Section 2.2.3, Algorithm 4
5: for all active targets do
6: if S and St assets within same tile are within range then
7: remove that target from the list of active targets
8: end if
9: end for

10: end while

λ. The parameter φ is a tile movement parameter that will be discussed in detail

in Section 2.2.2. In practice, for a set of tiles moving toward their self-designated

targets, φ limits how close each tile can move towards its target before HATRH

reevaluates the tiling of assets. The parameter λ is an asset movement parameter

that will be detailed in Section 2.2.3. In general terms, it apportions each asset’s

allowable movement within an iteration of HATRH between movement directed for

all assets within a tile and asset-specific movement (i.e., movement closer to the tile’s

C2 asset if required for functional communication or movement relatively closer to

the designated target).

2.2.1 Grouping Algorithm

The Grouping Algorithm forms functional tiles of sensor and strike assets around

C2 assets because these assets are central to the targeting process. Within each

HATRH iteration, the Grouping Algorithm may affirm existing asset tiles or realign

assets between tiles. The latter outcome is more likely when tiles are in close proximity

to each other or when assets become inoperable.

Of relevance when forming tiles is the relative proximity of assets. If a C2 asset

is close enough to at least one strike and one sensor asset to form a functional tile as

it moves towards a target within the current iteration, that C2 asset is considered to

22

be eligible to have sensor and strike assets assigned to it within a tile. For expository

convenience, we use the term proximal to indicate that a sensor or strike asset is “close

enough” within this context. For the remaining eligible C2 assets, the Grouping

Algorithm first assigns at least one proximal sensor asset and one proximal strike

asset. It then assigns the remaining sensor and strike assets to tiles. It assigns any

C2 assets not eligible for grouping to the nearest eligible C2 assets to follow their

movement. The Grouping Algorithm implements a default assignment procedure

for the extreme case when no sensor or strike assets are proximal to any C2 assets.

Algorithm 2 presents the Grouping Algorithm used within the HATRH.

Algorithm 2 Grouping Algorithm

1: for all i ∈ C2 do
2: Remove asset C2i from consideration if no sensor assets or no strike assets

are proximal
3: end for
4: if at least one C2 asset is eligible for grouping then
5: for all i ∈ C2 for eligible C2 assets do
6: if nearest ungrouped asset is proximal to C2i then
7: Assign it to C2i
8: else
9: Reassign nearest proximal asset from C2j to C2i (where j < i)

10: end if
11: end for
12: Assign closest remaining sensor and strike assets to closest eligible C2 asset
13: if every eligible C2 asset does not have an assigned, proximal sensor and strike

asset then
14: Remove the highest-indexed eligible C2 asset from consideration
15: Unassign all sensor and strike assets
16: Proceed to Line 4
17: end if
18: Assign all remaining assets to the closest, eligible C2 assets
19: else
20: Assign all assets to C21 as a single tile
21: end if

Lines 1-3 limits consideration for grouping to only C2 assets having proximal

sensor and strike assets. Lines 4-17 assign the sensor and strike assets to these eligible

23

C2 assets within a tile. Lines 4-11 iteratively apply a greedy heuristic to assign the

nearest asset of each type to a C2 asset. In ascending order by the eligible C2 asset

index, Lines 5-11 assign the nearest, proximal asset of each type to C2i. If no such

asset exists, the procedure reassigns an eligible proximal asset from a lower-indexed

C2 asset, removing it from the previously assigned tile. Line 12 assigns the remaining

sensor and strike assets to the closest, eligible C2 assets, which may, in turn, resolve

any non-functional tile issues. If it does not, Lines 13-17 reduce the set of eligible

C2 assets as a means to resolve the conflict and reruns the assignment of sensor and

strike assets by returning to Line 3. If all eligible C2 assets have a functioning tile

with proximal sensor and strike assets, Line 18 assigns all remaining C2 assets to

their nearest tiles. In the extreme case where no functional tiles can be formed, Line

20 assigns all assets to a single tile, and the HATRH procedure continues.

2.2.2 Tile Movement Algorithm

The Tile Movement Algorithm determines the synchronous movement direction

and distance traveled by the formed tiles. More specifically, the Tile Movement

Algorithm determines the respective targets the tiles move towards and how far each

tile moves in their respective directions.

The Tile Movement Algorithm manages each tile with respect to its centroid, a

cardinality weighted average of all asset locations within the tile. After identifying the

centroid, it assigns each tile to its closest target or target of interest (TOI), informing

a centroid-to-TOI vector. This algorithm moves all assets within a tile from their

current positions along the same vector.

The distance traveled by each asset within a tile is equal to the minimum of a

λ-informed tile movement distance and a φ-informed bound on the relative closure

of the tile to its TOI. More specifically, if an asset can move a distance of at most

24

q units during an iteration, the parameter λ indicates the percentage of that move-

ment reserved for individual asset movement, independent of tile-directed movement.

Lower λ-values reduce individual asset autonomy and tend the preserve the relative

positions of tile assets with respect to each other. By comparison, the parameter φ is

the maximum proportion of the centroid-to-TOI distance the tile is allowed to travel

within an iteration. Lower φ-values will limit tile movement and require more iter-

ations of the HATRH, compelling more revisits of asset grouping decisions. Within

Section 3, a designed computational testing experiment examines the effect of both

λ- and φ-values on solution quality with respect to the metrics presented in Section

2.5.

Preliminary testing did identify a pathological tile movement case that the algo-

rithm addresses. It is possible to have a negligible centroid-to-TOI distance, e.g., for

a tile with assets spread radially around its closest target but not within range to de-

stroy it. For such a case, the standard procedure within the Tile Movement Algorithm

would not compel the assets to converge on the target because the centroid-to-TOI

distance is small. This algorithm identifies such a case based on a small centroid-

to-TOI distance and, instead of directing the tile’s assets to move along a negligibly

small vector (e.g., 1% of the tile movement limit), it directs each asset within the tile

to move towards its centroid, akin to the procedure within the Nelder Mead Algo-

rithm that shrinks its simplex (Nelder and Mead, 1965). Algorithm 3 presents the

Tile Movement Algorithm used within the HATRH.

Lines 1 and 2 initialize the algorithm by respectively calculating the maximum dis-

tance any tile can move within an HATRH iteration without regard to their centroid-

to-TOI proximity and a user-defined tolerance for identifying the aforementioned

pathological tile-to-TOI case. Preliminary testing indicated that one percent of the

tile movement limit performed well for the instances examined in this study. How-

25

Algorithm 3 Tile Movement Algorithm

1: Set tile movement limit = min{(1−λ) S/St movement limit, C2 movement limit}
2: Set pathological movement tolerance ε = 0.01 tile movement limit
3: for all i ∈ tiles do
4: Calculate centroid for tilei
5: Identify TOIi and centroid-to-TOIi vector vi
6: Calculate movement length for li = min{tilemovelimit, φ||vi||}
7: Move all assets in tile i a distance of li in direction vi
8: if li < ε then
9: for all assets j in tile i do

10: Identify asset-centroid vector uj
11: Move asset a distance of min {asset movement limit− li, φ||uj|| } to-

wards the tile centroid
12: end for
13: end if
14: end for

ever, this parameter should be adjusted as necessary to accommodate the scale of an

instance.

Lines 3-7 perform tile movement. Line 4 and 5, respectively, determine each tile’s

centroid and each tile’s TOI and movement vector vi. Line 6 calculates the movement

length for each tile, and Line 7 moves each of the assets within a tile at the same

distance li, in the same direction vi.

Subsequently, Line 9 identifies the existence of pathological tile-to-TOI movement.

Line 10 identifies each asset to centroid vector uj and appropriately moves all assets

within the tile directly towards the centroid at a distance bounded by Line 11 along

the determined vector.

2.2.3 Individual Asset Movement Algorithm

Applied after the Tile Movement Algorithm, the Individual Asset Movement Algo-

rithm accounts for a degree of individual asset autonomy informed by the parameter

λ, moving assets within each C2-oriented tile. This algorithm ensures that asset-

specific movement within an iteration (i.e., λ) seeks to address two priorities. First,

26

it ensures any sensor and strike assets assigned to the tile but not proximal to their

closest C2 asset within said tile, denoted C2k, move within – or close to within –

the communication range of the this C2 asset. Second, it seeks to move sensor and

strike assets closer to the TOI without moving outside the communication range of

the assigned C2. As the C2 assets serve as the foundational tiling element, no fur-

ther movement will occur during this portion of the HATRH as their role shifts from

routing to ensuring proper relaying of communication commands to subsidiary assets

in the hierarchical chain.

Given the asset-specific movement allowed by λ, this algorithm is relatively in-

tuitive for its first priority. After identifying any assets not within communication

range of the nearest C2 within the tile, it moves them the minimum distance to be

within range or, if that is too far within an HATRH iteration, moves them as close

as possible to that point.

The Individual Asset Movement Algorithm’s second priority applies to assets

within communications range of the C2k asset. Given the relative locations of the

C2k asset within a tile, a TOI, and a sensor or strike asset (denoted Si/Sti) within

communications range of the C2 asset, Figure 1 depicts the geometry pertaining to

identifying the ideal asset location α and the corresponding distance β. Note that α is

as close as possible to the TOI along the Si/Sti-to-TOI vector while remaining within

communications range of the C2k asset. The Individual Asset Movement Algorithm

will move the asset to point α or, if the λ-informed individual asset movement pre-

cludes it, move it as close to α as possible, unless the distance to the TOI minus the

asset’s defined range is less.

Simple trigonometric identities inform the calculation of α, as depicted in Figure

1. Via Equation (1), θ1 is computed using the Law of Cosines. Equations (2) and (3)

respectively compute θ2 and θ3 using the Law of Sines and the property that the sum

27

Figure 1. Guide to Finding Optimal Movement Point

of a triangle’s interior angles equals π radians. Finally, Equation (4) computes β via

the Law of Sines. Algorithm 4 presents the HATRH’s Individual Asset Movement

Algorithm.

θ1 = cos−1

(
dist2

C2-S/St + dist2
S/St-TOI − dist2

C2-TOI

2(distC2-S/St)(distS/St-TOI)

)
(1)

θ2 = sin−1

(
sin(θ1)(dist2

C2-S/St)

rangeC2

)
(2)

θ3 = π − θ1 − θ2 (3)

β =
sin(θ3)rangeC2

sin(θ1)
(4)

Lines 1-13 examine each tile formed during the current HATRH iteration, and

Lines 2-12 direct the movement of sensor and strike assets within a given tile. Line

3 determines the closet C2 asset within the assigned tile the individual assets will

attempt proximal movement. For an asset beyond possible movement range to the

28

Algorithm 4 Individual Asset Movement Algorithm

1: for all tiles do
2: for all sensor and strike assets in a tile do
3: Let C2k be the closest C2 asset in the tile to the sensor (or strike) asset
4: if asset-to-C2k distance ≥ (asset movement limit + rangeC2) then
5: Move asset as close to C2k as adjustment limit allows
6: else
7: Let mj=minimal distance an asset j move to be within range of C2k
8: Move mj towards C2k
9: Calculate β via Equations 1-4

10: Move asset a distance of min{β, asset movement limit−mj, distSi/Sti-TOI−
rangeS/St} towards the TOI

11: end if
12: end for
13: end for

closest C2 within the tile, Lines 4-5 move it as close as possible. Otherwise the asset

moves the minimal distance necessary to be within range of the closest determined

C2 asset (Lines 7 and 8). Lines 9 and 10 move the assets as close as possible to point

α or the TOI as necessary.

2.2.4 Illustrative Application of an HATRH Iteration

The dynamics and interplay of the algorithms within the HATRH as applied to

the different types of assets merit illustration via an example. Figure 2 depicts a

single iteration of the HATRH applied to a set of assets. This instance has three

assets of each type: C2 (C21, C22, C23), sensors (S1, S2, S3), strike assets (St1, St2,

St3), and targets (T1, T2, T3).

Within the HATRH iteration, Figure 2a depicts the results of applying the Group-

ing Algorithm and the initial steps of the Tile Movement Algorithm. C21 does not

have both a sensor and strike asset proximal to it, so it cannot form a functional tile.

The algorithm initially assigns S2 and St2 to C22, and S3 and St3 to C23, after which

is assigns the remaining assets (i.e., C22, S1, and St1) to the nearest C2 asset (i.e., C22

29

for each such asset). Also depicted in Figure 2(a) from the Tile Movement Algorithm

is the identification of each tile’s centroid, TOI, and centroid-to-TOI vector.

(a) Grouping and preliminary
Tile Movement calculations

(b) Tile Movement

(c) Individual Asset Movement,
HATRH iteration s

(d) Grouping and preliminary
Tile Movement calculations,
subsequent HATRH iteration

Figure 2. HATRH Single Iteration Walkthrough

Figure 2b shows the result of the Tile Movement Algorithm, with all tile move-

ments for this instance bounded by φ = 0.25. Figure 2c presents the outcome of the

Individual Asset Movement Algorithm. The algorithm moved assets S1 and St1 as

close to being in communications range of C22 as permitted by λ, and it moved the

remaining sensors and strike assets as close to their respective α-points as allowed, to

move towards their TOIs. To conclude the HATRH iteration, no targets are within

range of both a sensor and a strike asset within a functional tile, so all targets remain

active.

For the subsequent HATRH iteration, Figure 2d shows the regrouping of assets.

30

Each C2 asset has proximal sensor and strike assets, so the Grouping Algorithm forms

three functional tiles. During preliminary calculations, the Tile Movement Algorithm

identifies and Figure 2d depicts a TOI and a tile-to-TOI vector for each tile.

This illustrative instance of an HATRH exhibited several beneficial outcomes of

HATRH. The subsequent iteration formed the maximal number of possible func-

tional tiles, and there was a one-to-one assignment of tiles to targets. However, such

outcomes are not assured. While implementing the distributed, dynamic command-

and-control precepts of Mosaic Warfare, the HATRH may route assets inefficiently,

or it may assign multiple assets to destroy a single target, a realistic outcome of Mo-

saic Warfare. Within this context, it is of interest to characterize and quantify the

relative inefficiencies of Mosaic Warfare relative to an operational environment where

communications are not limited, and Mosaic Warfare is not necessary.

2.2.5 HATRH Evaluation Metrics

Mosaic Warfare exhibits the potential for two critical inefficiencies: asset routing

and asset-to-target assignment. Whereas the former inefficiency can waste fuel and

time, the latter can waste munitions. Moreover, the levels of inefficiency may be

affected by instance-specific characteristics such as the initial, relative disposition of

assets and targets, and the congestion of assets within a region. The user-defined

parameters λ and φ may also affect these outcomes. Before examining such effects,

it is important to formalize a POA-like metric to quantify each of these potential

inefficiencies.

The first POA-like1 metric involves the number of engagements during an oper-

ation. During the execution of the HATRH, it is feasible for two tiles to arrive at

and destroy a TOI within a single iteration. This outcome is reasonable for Mosaic

1We use the term POA-like rather than POA because Mosaic Warfare does not represent complete
anarchy; it manifests a lower level of chaos via localized rather than centralized command and control.

31

Warfare, which does not assume that groups of assets (i.e., tiles for the HATRH)

can necessarily communicate, so each tile may expend munitions to destroy the same

target. In contrast, a perfectly efficient operation would expend only one munition

per target. Thus, the ratio between the number of tile-to-target engagements by the

HATRH to the number of targets is our munitions efficiency metric, or POAme.

The second POA-like metric measures route inefficiency. If an operational envi-

ronment allowed for centralized communication with complete information about the

set of targets (i.e., no sensors need positively identify the targets, and no C2 assets

require routing), the most efficient routing of assets would minimize the average dis-

tance traveled by the strike assets, the assets that launch the munitions to destroy

the targets. By comparison, applying the HATRH to an instance will yield an av-

erage distance traveled by strike assets to destroy the set of targets that may not

be efficient. Herein, we adopt the average strike distance ratio, POAasd as a second

performance metric for Mosaic Warfare, computing it as the ratio between the actual

and optimal average distance traveled by strike assets to destroy the set of targets.

The efficient, average strike distance can be identified via the optimal solution to

a math program that uses the following sets, parameters, and decision variables.

Sets

• N = {1, ..., n}: The set of nodes representing the initial location of all strike
and target assets in the operation, indexed alternatively on either i or j.

– Nt ⊂ N is the subset of nodes corresponding to targets.

• A: The set of directed arcs indexed by (i, j), for all i ∈ N and j ∈ Nt.

• G(N,A): the directed network.

• K: the set of strike assets, indexed on k.

32

Parameters

• dij: length of arc (i, j)

• bik: binary parameter equal to 1 if strike asset k is initially located at node i,
and 0 otherwise.

Decision Variables

• wijk: a binary variable equal to 1 if strike asset k traverses arc (i, j), and 0
otherwise.

• uik: non-negative variable specific to each node i and strike asset k, used within
the formulation to implement Miller-Tucker-Zemlin (MTZ) subtour elimination
constraints (Miller et al., 1960).

With the aforementioned notion, we formulate Problem P to identify the minimal

distance routing of strike assets to visit all target locations.

P: min
w,u

1

|K|
∑

(i,j)∈A

∑
k∈K

dijwijk (5)

s.t.
∑

j:(i,j)∈A

wijk −
∑

j:(j,i)∈A

wjik ≤ bik, ∀ i ∈ N, k ∈ K, (6)

∑
i:(i,j)∈A

∑
k∈K

wijk ≥ 1, ∀ j ∈ Nt, (7)

uik − ujk +Mwijk ≤M − 1, ∀ (i, j) ∈ A, k ∈ K, (8)

wijk ∈ {0, 1}, ∀ i ∈ N, j ∈ N, k ∈ K, (9)

uik ≥ 0, ∀ i ∈ N, k ∈ K. (10)

The formulation seeks to minimize the average distance traveled by strike assets

(5). Equation (6) enforces conservation of flow for the movement of strike assets.

Equation (7) ensures that each target is visited by at least one strike asset, and

Equation (8) applies the MTZ subtour elimination constraints. It suffices to set M =

|Nt|. Finally, Equations (9) and (10) respectively enforce appropriate restrictions on

the decision variables.

33

As a caveat, we recognize that certain efficient performances may not be attain-

able, or a decision-maker may not want to attain them. For example, an asset routing

solution that minimizes POAasd might only use one strike asset, forgoing the use of

all others and extending the duration of a mission while minimizing the average strike

asset distance. Alternatively, a solution that minimizes POAme provides no redun-

dancy when destroying targets, assuming that every munition will work perfectly and

destroy a target with certainty. However, each of these POA-like metrics is suitable,

identifiable, and ultimately useful to benchmark the performance of the HATRH al-

gorithm to implement Mosaic Warfare for instances of the underlying problem.

2.3 Testing, Results, and Analysis

It is relevant to analytically test the effect of both user-defined algorithmic param-

eters and selected problem features on the efficacy of the HATRH algorithm vis-à-vis

the POA metrics set forth in Section 2.2.5. The algorithmic parameters of interest

are the tile movement parameter φ and the individual movement influence parameter

λ. Problem features examined herein are the initial, relative dispositions of the set

of assets with respect to the set of targets and the relative congestion of assets and

targets within the area of interest.

We examine instances for a representative application of the motivating problem

for testing. All initial asset and target locations instantiate within a 150 km × 150 km

geographic region. Testing assumes movements, inter-asset communications, and tar-

gets are coplanar, so the depiction of results directly illustrates inter-asset distances.

Informed values for the aircraft range and travel limitation parameters for C2, sensor,

and strike aircraft within each iteration come from open-source, unclassified perfor-

mance characteristics for the E-3 Sentry (U.S. Air Force, 2015), RQ-4 Global Hawk

(U.S. Air Force, 2014), and F-16 Fighting Falcon (U.S. Air Force, 2021). More specif-

34

ically, the range for the C2 and sensor aircraft reflect the respective aircraft’s com-

munication transmission range (Jane’s, 2021). In contrast, the strike asset’s range is

assumed to be that of the Joint Direct Attack Munition (U.S. Air Force, 2017), which

is consistent with typical F-16 armament (Jane’s, 2021). A logarithmic transforma-

tion and subsequent uniform, linear scaling of all asset parameters ensured instances

scale to the 150 km × 150 km engagement region.

With respect to HATRH algorithmic parameters, a designed computational testing

experiment examined three values of the tile movement parameter φ and 19 values

of the asset movement parameter λ. We considered φ ∈ {0.25, 0.51, 0.75}, with the

middle value slightly above 0.5 to guarantee respective tile convergence on TOIs.

Tested values of λ ∈ {0.05, 0.10, ..., 0.95} represent a large range of relative movement

autonomy reserved for individual asset movement.

Testing considered relative asset congestion feature as follows. Each instance

was generated for a specified total number of assets (including targets). The affixed

relative numbers of targets, sensors, strike assets, and C2 assets at proportions of 0.5,

0.2, 0.2, and 0.1 of the total number of assets. Testing considered 10, 30, 50, and 70

total assets initially located within the engagement area.

Of course, the relative disposition of the sets of assets and targets is another im-

portant problem feature, as it characterizes an engagement scenario. Testing herein

considered three conceptually-motivated scenarios. Figure 3 illustrates an example of

initial asset location for sensors (S), strike assets (St), C2 assets (C2), and targets (T)

for Scenarios 1-3. Scenario 1 represents a relatively linear movement of assets toward

targets, as may occur during an incursion into adversary-controlled territory. The

movement is assumed to occur from left-to-right (without loss of generality) within

the engagement area, with initial locations of sensors, strike aircraft, and C2 aircraft

dispersed randomly within the leftmost 30% of the region and targets dispersed like-

35

wise in the rightmost 30%. Scenario 2 represents a defensive encirclement, as may

occur when friendly assets begin an engagement in a relatively small region in the

center of the engagement area, moving to destroy targets that encircle it. In con-

trast, Scenario 3 represents an offensive encirclement; wherein friendly assets initially

encircle a set of targets in the center of the engagement area.

(a) Scenario1 1 (b) Scenario 2

(c) Scenario 3

Figure 3. Illustrative depiction of Scenarios 1-3 for relative disposition of initial asset
and target locations

Testing applied the HRCH algorithm to solve 30 instances for each of the 684 com-

binations of algorithmic parameters and problem features. All testing was performed

using Python (Version 3.9.7) to implement the HATRH on an Intel(R) Core(TM)

i7-10875H CPU @2.30GHz with 128 GB of RAM on a 64-bit operating system. The

optimal routing of strike assets to inform the calculation of average performance met-

ric POAasd was identified via the GurobyPi package to invoke the commercial solver

Gurobi (Version 9.5.1) with termination criteria of 30 minutes of computational effort

36

and a 0.0001% relative optimality gap 2.

When finding the solution to Problem P to compute POAasd, Gurobi was able to

identify an optimal routing solution for all but the largest instances for a subset of

scenarios. For such cases, subsequent discussions detail when that occurred, why it

occurred, and how it may affect the corresponding assessments of Mosaic Warfare’s

relative effectiveness.

Because the scenarios are specific to conceptually-motivated engagements, the

following discussions are scenario-specific. Sections 3.1-3.3 respectively present and

discuss the results and insights for testing on 6840 instances each of Scenarios 1-3.

2.3.1 Testing Results for Scenario 1

Figure 4 presents the testing results for Scenario 1, with each of three subfigures

depicting the average performance metrics POAme and POAasd on the respective

horizontal and vertical axes for 30 instances of each of the 228 parameter and fea-

ture combinations. The respective subfigures differentiate the instances by problem

feature or an HRCH parameter, each with the legend inset. Figures 4a, 4b, and 4c

respectively illustrate the relative differences in instance performance due to relative

asset congestion (i.e., total assets and targets), tile movement parameter (φ), and

asset movement parameter (λ).

Of note, when calculating POAasd, Gurobi identified the optimal solution to Prob-

lem P for instances having either 10 or 30 total assets-and-targets. For relative asset

congestions having 50 and 70 players, Gurobi found feasible solutions with respective,

average optimality gaps of 11.4% and 28.7%. Such feasible solutions to benchmark

Mosaic Warfare performance may be optimal, but they are not assuredly so. This

possibility indicates the results in Figure 4a are lower bounds on MOAasd for 50 and

2An electronic copy of the Python code used to implement HATRH can be found at the following
GutHub link: https://github.com/donnelsd/HATRH

37

70 total assets-and-targets; the relative performance of Mosaic Warfare may be worse.

(a) Differentiated by relative asset
congestion

(b) Differentiated by tile movement
parameter (φ)

(c) Differentiated by asset movement
parameter (λ)

Figure 4. HATRH-implemented Mosaic Warfare performance for Scenario 1, over 30
instances of each of 228 combinations of relative asset congestion, φ, and λ

Nevertheless, the results exhibit compelling trends for specific HATRH algorithmic

parameters or problem features. Foremost, Figure 4a shows that an increase in asset

congestion portends more inefficient routing of assets (i.e., POAasd). Three aspects

of Mosaic Warfare allow for this inefficiency. First, strike assets are grouped and may

be limited in movement by their assigned tile. Second, strike assets may iteratively

regroup between different C2 assets. Third, tiles myopically attack the nearest TOI.

The likelihood of each of these three potential inefficiencies increases with greater

asset congestion, as is manifest in Figure 4a. Such a trend is not as starkly evident

for munitions use (i.e., POAme), but the minimum, average, and maximum values for

average POAme each increase as asset congestion increases. This type of inefficiency

occurs when multiple tiles engage the same target(s) within an HATRH iteration,

which is also more likely with higher relative asset congestion.

38

Specific trends are more subtle within Figure 4b. As the φ increases, the maximum

values for average POAme often increase, implying that larger movements between

reregrouping can yield greater inefficiencies for asset movements. However, such an

outcome does not hold, on average. Moreover, for a given level of relative asset

congestion, higher values of φ portend slight increases in average POAasd. However,

the relative effectiveness of HATRH-implemented Mosaic Warfare is not significantly

affected by φ for Scenario 1. This result indicates that more frequent asset regrouping

does not always improve Mosaic Warfare’s relative effectiveness. For instances akin to

Scenario 1, an initial grouping of assets may suffice, and one might forgo a regrouping

of assets in the absence of a specific need to do so (e.g., if an adversary destroys

friendly assets).

In contrast, Figure 4c shows a readily discernible effect of λ on Mosaic Warfare

performance via the HATRH. Its greatest impact is on POAme-values; as λ increases

for a given level of relative asset congestion, POAme generally decreases (i.e., im-

proves), whereas POAasd initially decreases before increasing gradually.

Figure 5 explores this effect of λ in greater detail. Figures 5a and 5b respectively

display POAasd- and POAme-values for increasing values of λ ∈ {0.05, 0.1, ...0.95}

and, at each λ-values, for 30 instances each of the 12 combinations of φ and relative

asset congestion settings. Both figures differentiate the instance performances by the

relative asset congestion, again with legends inset.

Recall that higher λ−values indicate the Tile Movement Algorithm controls a

lesser proportion of individual asset movement limits. Higher λ-values reserve move-

ment capability for use by the Individual Asset Movement Algorithm that affords

greater agency to sensor and strike assets to move towards a TOI. Within Figure 5a,

as λ increases beyond 0.80, the POAasd−values increase for a given level of relative

asset congestion, more so for higher congestion levels. This result implies that indi-

39

(a) Effect of λ on POAasd (b) Effect of λ on POAme

Figure 5. The effect of λ on HATRH-implemented Mosaic Warfare performance for
Scenario 1, over 30 instances of each of 228 combinations of relative asset congestion,
φ, and λ

vidual asset agency within Mosaic Warfare should be limited within high congestion

instances akin to Scenario 1 if distance (fuel) efficiency is important to a decision-

maker. In contrast, Figure 5b exhibits a coarse trend of decreasing POAme-values

with an increase in λ for a given level of relative asset congestion. This result implies

that individual asset agencies should be encouraged within the same high conges-

tion instances akin to Scenario 1 if the efficient use of munitions is of paramount

importance. Thus, the λ-value should be determined based on the decision-maker’s

relative priority over the performance metrics. In the absence of a known priority,

these results indicate λ ∈ [0.6, 0.8] portend better outcomes.

2.3.2 Testing Results for Scenario 2

Figure 6 depicts the testing results for Scenario 2, with Subfigures 6a-6c respec-

tively differentiating the instances by the relative asset congestion, tile movement

parameter, and asset movement parameter. For POAasd calculations, Gurobi identi-

fied an optimal solution to Problem P for every instance, indicating assuredly accurate

POAasd values.

Selected performance trends from Scenario 1 remain present in the Scenario 2

results. Within Figure 6a, an increase in relative asset congestion tends to increase

average POAasd-values, at least initially. There is no exhibited difference in aver-

40

(a) Differentiated by relative asset
congestion

(b) Differentiated by tile movement
parameter (φ)

(c) Differentiated by asset movement
parameter (λ)

Figure 6. HATRH-implemented Mosaic Warfare performance for Scenario 2, over 30
instances of each of 228 combinations of relative asset congestion, φ, and λ

age POAasd-values between the 50 and 70 levels of relative asset congestion. This

scenario-specific difference implies there may be some upper bound on the routing-

related level of inefficiency for a defensive encirclement scenario as asset congestion

increases. The effect of increasing relative asset congestion on average POAme is

again mild, slightly increasing the minimum, median, and maximum values.

Figure 6b exhibits very slight relationships between φ and the performance metrics

for Scenario 2 instances. No relationship is evident for average POAasd. However,

an increase in φ exhibits a greater minimum, median, and maximum average POAme

for some but not all relative asset congestion levels. As with Scenario 1, there is a

dubious benefit to frequent regrouping in the absence of special circumstances such

41

as losing assets due to adversary action.

Figure 6c depicts an influence of λ on Mosaic Warfare performance consistent

with the results observed for Scenario 1. For a given relative asset congestion level,

higher λ-values portend lesser munition expenditures (i.e., lower POAme-values). An

increase in λ initially decreases and then gradually increases the average POAasd

for a given relative asset congestion level. Thus, the tradeoff in metric performance

remains evident for λ. Although not presented here for the sake of brevity, extended

testing on λ-values for Scenario 2 again demonstrated a range of λ ∈ [0.6, 0.8] to be

preferable, in the absence of a strict preference over the metrics.

2.3.3 Testing Results for Scenario 3

Figure 7 presents the testing results for Scenario 3, an offensive encirclement.

Figures 7a-7c respectively differentiate the instances by the relative asset congestion,

tile movement parameter, and asset movement parameter. For POAasd calculations,

Gurobi identified an optimal solution to Problem P for all but the instances having

70 assets-and-targets, for which it found feasible solutions with an average relative

optimality gap of 3.3%. As such, the POAasd metrics for those instances are (relatively

tight) lower bounds on the values depicted in Figure 7.

Within Figure 7a, an increase in the relative asset congestion degrades both Mosaic

Warfare performance in a manner consistent with Scenarios 1 and 2, as measured by

POAasd and POAme. Worse performance results from a greater number of tiles

making myopic decisions.

Relative to Scenarios 1 and 2, the effect of φ for a fixed, relative asset congestion

level is slight and arguably negligible within Figure 7b, reinforcing the intuition that

a regrouping procedure may not be warranted when all assets remain intact. Like-

wise, increases λ beyond a threshold can increase POAasd while decreasing POAme.

42

(a) Differentiated by relative asset
congestion

(b) Differentiated by tile movement
parameter (φ)

(c) Differentiated by asset movement
parameter (λ)

Figure 7. HATRH-implemented Mosaic Warfare performance for Scenario 3, over 30
instances of each of 228 combinations of relative asset congestion, φ, and λ

However, these trends are not as strong for Scenario 3, and testing results exhibit

some nuances worth additional exploration and discussion.

Figures 8a and 8b depict the results from Figures 7b and 7c, but with the results

reduced to only the instances having a total of 70 assets and targets.

(a) Differentiated by tile move-
ment parameter (φ) in relative
high congestion

(b) Differentiated by asset move-
ment parameter (λ) in relative
high congestion

Figure 8. HATRH-implemented Mosaic Warfare performance for Scenario 3, in rela-
tively high congestion (level 70), of φ, and λ

43

Note within Figure 8a that instances having lower average POAme-values do not

always exhibit an increase in average POAasd. For instances with φ = 0.25 and

POAme ≤ 1.2, there are two subsets of outcomes, one each with higher and lower

POAasd values. Examining Figure 8b, it is evident that an interaction of λ and φ

affects Mosaic Warfare performance. More specifically, low λ-values paired with low

φ-values correspond to the lower POAasd-values, whereas higher λ-values paired with

the same low φ-values yield the higher of POAasd-values.

This result indicates that the selection of the asset movement parameter λ should

be considered in combination with selecting the tile movement parameter φ for high

relative asset congestion levels. More notably, for Scenario 3, the previous testing-

informed intuitions about the relative unimportance of regrouping assets and the

proposed default value of λ ∈ [0.6, 0.8] no longer hold. When relative asset congestion

levels are high and the HATRH does not regroup assets frequently, less agency should

be afforded to individual asset movement, else greater levels of inefficient asset routing

will result.

As with Scenario 1, testing indicated merit to a more detailed examination of

the effect of λ on solution performance for Scenario 3 instances. Figures 9a and 9b

respectively depict the average POAasd- and average POAme-values for increasing

values of λ ∈ {0.05, 0.1, ...0.95} and, at each λ-value, for 30 instances each of the nine

combinations of φ and four relative asset congestion settings. Both figures differentiate

the instance performances by the relative asset congestion.

Within Figure 9a, the effect of λ on POAasd is not as great for Scenario 3 instances.

Moreover, the observed maximum POAme-values decrease with either lower or higher

λ-values, relative to λ ≈ 0.4. In more detail, we observe the departure from previous

intuition formed for Scenarios 1 and 2. When relative asset congestion is high, the

asset movement parameter λ should be selected with deliberateness. If φ is lower,

44

(a) POAasd (b) POAme

Figure 9. Asset movement parameter (λ) versus average POAasd and POAme differen-
tiated by relative asset congestion

we recommend higher λ-values, but lower λ-values may yield superlative aggregate

performance otherwise.

2.3.4 HATRH Computational Run time

The computational effort required by the HATRH was small (i.e., less than 0.6

seconds per iteration for the largest instances), indicating its suitability to rapidly

assess the effect of different algorithmic parameters and problem features on the

relative efficacy of Mosaic Warfare, relative to centralized command-and-control of

assets when inter-asset communication is possible between all friendly assets. Across

all scenarios, the computational time of HATRH increased with an increase in the

relative asset congestion and an increase in λ, whereas φ exhibited no discernible

effect. Figure 10 depicts the average computational time for each of the scenarios, as

affected by both λ and the number of assets and targets.

Across all scenarios, a more congested operational space yielded higher relative

average run time. Initially, an increase the value of λ decreases of average HATRH

computational time. Whereas this decresase is more pronounced in Scenario 3, as

depicted in Figure 10c, the average computational time is largest for Scenario 1 for

comparative values of λ. Average HATRH run time reaches a minimum when λ ≈ 0.5,

then begins to increase as the values approaches one. Figure 10b shows the rapid

45

(a) Scenario1 1 (b) Scenario 2

(c) Scenario 3

Figure 10. Average Computational Time of HATRH by Scenario Relative to λ

increase in time in Scenario 2 for these values. In general, this result comports

with expectations. Lower λ-values accord with vacillation; individual assets exhibit

very little initiative, so the completion of a mission is left to the initiative of the

command-and-control assets within the groups. In contrast, higher λ-values accord

with aggressive chaos; larger initiative by individual assets can create tension with

direction given by C2 assets.

The average time (in seconds) per iteration of HATRH increases roughly linearly

with an increase in the number of assets and targets. Such a result also comports

with expectations. The time required for an HATRH iteration depends directly on

the number of assets that must be proximally (re)grouped. Finally, over the 6840

instances tested for each of Scenarios 1-3, the average of all run times were 5.6, 5.8,

and 2.9 seconds, and the maximum run times were 43.7, 31.8, and 10.5 seconds. In

general, these computational times are not cumbersome for HATRH to represent the

implementation of Mosaic Warfare for these scenarios and instance sizes.

46

Of interest is the identification of when instance sizes may induce a notable com-

putational burden. Examining the slowest performing instance of the HATRH for

Scenario 1 with λ = 0.95, and φ = 0.51, Table 1 presents the average HATRH run

time and iteration count of 10 instances for all combinations of 100, 300, and 500

assets and targets with an operational area length of 100, 300, and 500.

Table 1. Computational Exploration of the HATRH

Total Assets
and Targets

Total Operational
Field Length

Average Total
HATRH Run Time

Average Total
HATRH Iterations

100 38.1 33.1
300 100 399.9 28.5
500 1573.5 28.8
100 214.8 178.9
300 300 2056.2 158.9
500 5995.5 151.1
100 440.1 398.2
300 500 4140.5 315.6
500 12669.0 306.2

For this greater number of assets and targets, and for the algorithmic param-

eters yielding the slowest performance in previous testing, both the average total

time (in seconds) and the average time per iteration (in seconds) of HATRH increase

at a slightly faster than linear rate as the number of assets and targets increases.

The former trend provides greater context to the previous observation, as the linear

trend only held for a smaller number of assets and targets. An increased operational

area length will require more HATRH iterations to complete the mission because the

aircraft movement within each iteration is limited. Overall, large instances involv-

ing hundreds of assets and targets operating on a large area requires more time to

run HATRH without utilizing parallelization of selected processes within the overall

algorithm.

47

2.4 Conclusions and Recommendations

This research evaluated a practical implementation of Mosaic Warfare, an opera-

tional concept conceived to implement decentralized, regional command-and-control

over different types of warfighting assets in circumstances when centralized control is

not feasible. To accomplish this, this research set forth a Hierarchical Asset Tiling

and Routing Heuristic (HATRH) to emulate the principles of Mosaic Warfare by it-

eratively forming functional tiles of different types of assets, moving the tiles towards

their myopically-identified targets, and allowing some user-defined degree of individ-

ual asset agency for movement, relative to its tile. Unique to this problem framework

is the requirement to ensure tiles are functional in terms of composition and inter-

asset communication; for the problem of interest, each tile must have a sensor, strike

asset, and command-and-control asset to respectively identify a target, direct action,

and implement that action. Informing both the testing herein and future evaluations

of Mosaic Warfare, this research also proposed two performance metrics related to the

efficient routing of assets and the efficient use of munitions to evaluate implementation

vis-á-vis an approach leveraging centralized command and control.

Testing examined combinations of selected HRCH algorithmic parameters and

problem features related to the engagement scenario and the relative asset congestion

within an engagement area. Over all scenarios explored, the HATRH-implemented

Mosaic Warfare was less efficient as relative asset congestion increased. A user-defined

parameter corresponding to the frequency with which asset grouping decisions were

revisited presented little-to-no effect on performance. However, a user-defined param-

eter that preserves some agency for individual assets to move relative to their tile did

affect performance. Testing identified recommended a default range of this HATRH

parameter setting, specific to each operational scenario.

The HATRH works well as a means to demonstrate and evaluate Mosaic War-

48

fare. Although problem instance sizes occasionally challenged the computation of

performance metrics for higher relative asset congestion, it never degraded the per-

formance of HATRH. Moreover, it is important to recall that HATRH accurately

implements and executes in a central manner decisions that are, in practice, made in

a distributed manner. Thus, the insights regarding performance pertain to Mosaic

Warfare, whereas any computational challenges pertain only to this mechanism to

synthetically emulate and evaluate Mosaic Warfare.

Two immediate directions for future research are readily apparent. It is worth

testing the HATRH implementation of Mosaic Warfare in circumstances that may

challenge existing insights. Specifically, extending testing may consider the loss of

friendly assets, as it may demonstrate circumstances when more frequent regrouping

decisions are beneficial. Moreover, variable algorithmic parameters should be consid-

ered; the effectiveness of Mosaic Warfare may improve if the relative aggressiveness

and autonomy afforded to tile and individual asset movement adjust according to the

proximity of tiles to targets-of-interest.

Alternatively, the analytically-driven insights compel the examination of different

modeling approaches altogether. Because more frequent regrouping did not exhibit

notable benefit, it may not be necessary. Moreover, a functional tile of assets need

not form until it is time to identify and strike a target. Thus, an optimal routing

and covering model is worth examining, with side constraints to enforce the proximal

relationships necessary for different types of assets to be locally functional and with

demand coverage (i.e., target destruction) occurring, e.g., within predesignated time

windows. Computational challenges will accompany such an approach, and mitigation

measures will be necessary.

49

III. A Multiple Asset-type, Collaborative Vehicle Routing
Problem with Proximal Servicing of Demands

3.1 Introduction

This research explores the problem of routing assets having different capabilities

over a network to service a set of demands in a collaborative manner, wherein the

collaboration by different asset types entails nearly simultaneous service to a demand

and a subset of asset types need only be close to a demand to service it.

Consider the following motivating civil scenario. During a heavy storm, weather

radar detects several tornadoes that touch down within a region, temporarily dis-

rupting cell phone communications, damaging buildings, and likely inducing human

casualties. The threat of more tornadoes abates, and it is time to provide help

with medical teams, humanitarian assets to deliver emergency provisions (e.g., food,

water), and construction crews to begin rebuilding damaged infrastructure. These

teams originate from different locations and can only communicate at limited ranges

with shortwave radio. While it is possible to route the different asset types indepen-

dently over the road network to visit the locations and provide service, a coordinated

response is necessary because the services require collaboration. Moreover, when de-

mand for relief and disaster supplies reach critical levels, rapid relief via collective

provision is more important than any consideration of precedence. However, the dif-

ferent asset types should visit each location in a nearly simultaneous manner. A first

advantage of this nearly simultaneous service is the completion of services in a coor-

dinated manner so relief efforts can subsequently focus on other demands, elsewhere.

In the absence of cell phone communications for coordination, police can provide local

communication and direction of different assets supporting multiple demands. More-

over, police need only be within radio range of the demand locations during servicing

50

to direct the other asset types. A second advantage of nearly simultaneous service is

that assets providing proximal service such as police are nearby to provide further,

on-call assistance (e.g., security, law enforcement) to other asset types if a situation

requires it (e.g., civil unrest).

This realistic scenario occurs with sufficient frequency to validate the importance

of this research that seeks to identify a model and accompanying solution methodology

to rapidly identify high quality solutions to route assets of different types and service

demands in a collaborative manner, given the problem’s complicating characteristics.

3.1.1 Literature Review

There is no shortage of research for routing disaster relief (e.g., Luis et al., 2012;

Baxter et al., 2019; Liu et al., 2020; Chang et al., 2022). However, given the many

complicating aspects of the asset routing problem this research seeks to address,

a thorough review of the literature understandably did not identify research that

addressed our problem.

Our problem is a variant of a route relaxed vehicle routing problem (VRP) (Goel

and Gruhn, 2008; Goel, 2010), allowing assets to start and end at different locations.

Toth and Vigo (2002) and Toth and Vigo (2014) published a sequence of diverse stud-

ies that collectively address common classes of VRPs and related solution methods.

Golden et al. (2008) and Golden et al. (2023) produced another high-quality sequence

of collected works in VRP research. Of interest is VRP literature related to the defin-

ing aspects of our problem: different types of assets that collaborate, (adjustable)

time windows for servicing demands, and proximal service of demands.

Although a notable body of VRP research routes different types of assets, the

manner in which they work together differs from our framework. Two-echelon VRPs

(Li et al., 2021; Sluijk et al., 2022) coordinate different asset types, e.g., one type

51

transports goods from warehouses to satellite locations, and another type transports

goods to customers. Split-delivery VRPs (Ceselli et al., 2009; Santillán et al., 2012)

are also related. Although this variant does not route different types of assets, it does

consider different assets working together to service demands via the accumulation

of partial servicing of demands by each of multiple, limited capacity assets. Missing

from these categories of VRPs are multiple assets types wherein each asset type must

service a demand for that demand to be serviced.

The VRP with Time Windows (VRPTW) provides a modeling structure with

which we can enforce the requirement that different types of assets must service a de-

mand with near simultaneity. The VRPTW routes assets to service demands within

their respective, predetermined time windows (e.g., Desrochers et al., 1992; Bräysy

and Gendreau, 2005a,b). Within VRPTW research, modeling structures vary accord-

ing to the nature of the time windows (Toth and Vigo, 2014). Time windows may be

narrow or wide, and time window constraints may be softly enforced (Cordeau et al.,

2002). Strictly enforced time windows can represent nearly simultaneous servicing of

demands by different asset types, but the a priori identification of time windows is

problematic, given the need to coordinate the routing of different numbers of assets of

varying types traveling at different speeds over a network from their respective origins.

Departing from the traditional use of time windows within the VRP literature, our

model uses them only to enforce nearly simultaneous service, not any servicing dead-

lines for demands. Thus, it is permissible for the time windows to shift. Given this

context, modeling in Section 3.2 considers adjustable time windows, a feature we have

not identified in the literature. As an aside, several VRPTW studies route different

asset types (e.g. Chen et al., 2021; Kuo et al., 2022), but such research typically ex-

amines two-echelon routing problems, again belying the nature of collaborative asset

type interactions in our underlying problem.

52

There is some VRP literature that considers proximally-serviced demand. Recent

work by Frey et al. (2022) explored a VRPTW variant that allows for flexible delivery

locations (VRPTW-FL) for each demand. In a compelling work, Tilk et al. (2021)

investigated the vehicle routing problem with delivery options (VRPDO), wherein dif-

ferent delivery location and time window options exist for each demand. Both of these

works considered a single type of vehicle delivering a common type of asset, so they

were absent any collaborative service specific to each demand . Modeling in Section

3.2 does not leverage the latter authors’ representation of alternative time windows

because it would increase the formulation size too much, but their mutual embrace

of alternative locations to service demand conceptually informs the representation of

proximal service for modeling in Section 3.2, at least indirectly.

Within the context of the related VRP literature, the defining aspects of our

problem are unique. The manner of collaboration between different asset types is

novel. Although VRPTW structures can help enforce the collaboration between asset

types when servicing demands, the adjustable nature of time windows will be new.

Likewise, although the VRPDO structure for alternative service times is not suitable,

both it and the VRPTW-FL inspire an approach to represent proximal servicing of

demands.

3.1.2 Statement of Contributions

This research makes two contributions to the VRP literature. First, it sets forth a

mixed-integer linear programming model to route different asset types that must col-

laboratively service demands with near simultaneity, as represented with adjustable

time windows, and while allowing a subset of assets to service demands proximally

rather than via co-location. Second, it proposes customized solution method alterna-

tives comprised of combinations of permutations of a model decomposition heuristic

53

and either of two preprocessing techniques to improve the likelihood of the heuristic

identifying a feasible solution.

Hereafter, Section 3.2 introduces the proposed model with its underlying assump-

tions, and Section 3.2.2 presents the model decomposition heuristic and the prepro-

cessing techniques. Section 3.4 illustrates the model validity via a representative

instance, after which it reports the result of computational testing to compare the

nine combinations of solution methods and preprocessing techniques that collectively

demonstrates their relative efficacy and tractability. Finally, Section 3.5 concludes

with a summary of modeling and computational insights, and proposes directions to

extend this research.

3.2 Model Formulation

Section 3.2.1 discusses modeling assumptions, and Section 3.2.2 presents the mixed-

integer linear programming formulation for the problem of interest. The modeled

vehicle routing problem variant services each demand by an asset from each of mul-

tiple asset types, and it allows a subset of asset types to service demands proximally

(i.e., within a given distance of the demand rather than by visiting it). To enforce

collaborative servicing, the model uses time windows, wherein collaborative servicing

occurs because an asset of each type services a demand a within a time window. Ad-

ditionally, the model allows for the adjustment (i.e., shifting) of each demand-specific

time window to coordinate the timing with which demands are serviced by assets of

different types.

3.2.1 Modeling Assumptions

A few assumptions are foundational to our modeling. First, we assume the assets

are routed on a network comprised of nodes and arcs. This assumption is directly

54

representative when modeling a related problem for a road network, and it likewise

holds when allowing assets to traverse directly between demand points in Euclidean

space. Alternatively, for problems allowing direct, point-to-point travel, it enables

the discretization of Euclidean space via tessellation. The ability to discretize the

space in this manner enables proximal service; an asset with such a capability can

service a demand from a proximal node in the network. Second, we assume that

different asset types may service a demand with near simultaneity rather than either

exact simultaneity or in accordance with a strict precedence of their on-site role

in service. We contend this assumption is acceptable because we do not expect

the prescribed solution for routing vehicles to be implemented in exact measure;

in practice, there is variability in travel time, time on-site, and the like. Third, the

duration of time to service a demand is negligible. For some applications (e.g., delivery

of construction supplies), this assumption is representative; for other applications

(e.g., disaster relief), it is a notably simplifying assumption. The current model can

be parameterized to negate the simplification implied by this assumption, as will be

discussed in Section 3.2.

3.2.2 Mathematical Program

As an introduction to the model formulation, it is first important to define the

relevant sets, parameters, and decision variables.

Sets

• Ψ: the set of asset types, indexed on ψ, where a demand must be serviced by
each asset type in a nearly simultaneous manner

– ΨD ⊆ Ψ: the subset of asset types that must visit a demand node to
service it

– ΨP ⊆ Ψ: the subset of asset types that can service demands proximally.
Assumed is ΨD,ΨP 6= ∅, else a simpler model is appropriate.

55

• K: the set of assets, indexed on k and partitioned on Ψ, with subsets Kψ 6=
∅, ∀ ψ ∈ Ψ

• N : the set of nodes in the network, indexed on either i or j

– Nd ⊆ N : the subset of nodes that are demand nodes

– Nd
iψ ⊂ N : the subset of nodes from which asset type ψ ∈ ΨP can proximally

service demand node i ∈ Nd

• A: the set of directed network arcs, indexed on (i, j)

• G(N,A): the directed network comprised of nodes N and arcs A

Parameters

• cijk: a per unit cost incurred by asset k ∈ K traversing arc (i, j) ∈ A

• bik: a binary parameter equal to 1 if asset k is initially located at node i, and 0
otherwise

• τijk: a positive parameter indicating the minimum time required to transverse
arc (i, j) for asset k

• LBi: a lower bound representing the earliest time at which an asset of any type
ψ ∈ Ψ may service a demand at node i ∈ Nd

• UBi: an upper bound representing the latest time at which demand i ∈ Nd

must be serviced by all asset types, if any asset type services it at time LBi.
The computation

(
UBi − LBi

)
is the service window width of time representing

near simultaneity.

• ω: a scalar representing how much slower an agent may traverse an arc. For
example, if ω = 2, an agent may take up to twice as long as their fastest time
to traverse an arc, i.e., their slowest speed is 1/ω times their fastest speed.

• δ: the increment of time with which the lower and upper bounds on a demand-
specific time window may be increased, i.e., the service window shift increment .
Of note, by setting the LBi-values for an instance to be the soonest any asset can
service demand i, there is neither need nor merit to decrementing the bounds
for a service time window.

• M1,M2: large, positive numbers used within bounding constraints in the for-
mulation. Herein, it suffices to set M1 = |N | and M2 = τmaxijk · |A|, where
τmaxijk = argmax

(i,j)∈A,k∈K
{τijk}.

56

Decision Variables

• xijk: a binary decision variable equal to 1 if asset k traverses arc (i, j), and 0
otherwise

• tik: a non-negative decision variable indicating the time at which asset k arrives
at node i

• αi: a non-negative decision variable representing the number of shifts of duration
δ applied to the time window for servicing node i ∈ Nd. For computational
tractability, we assume αi ∈ Z+, ∀ i ∈ Nd.

• φijk: a binary decision variable equal to 1 if asset k ∈ Kψ for ψ ∈ ΨP services
demand node i ∈ Nd from proximal node j ∈ Nd

iψ, and 0 otherwise

• uik: a non-negative decision variable specific to each node i and asset k, used to
implement Miller-Tucker-Zemlin (MTZ) subtour elimination constraints (Miller
et al., 1960).

• LBi: a non-negative decision variable equal to LBi+δαi, indicating the earliest
time any asset type can service demand node i ∈ Nd

• UBi: a non-negative decision variable equal to UBi + δαi, indicating the latest
time every asset must service demand node i ∈ Nd

Given this notation, the math programming formulation for the collaborative ve-

hicle routing problem with proximity service (CoVRP-PS) follows.

min
x,t,α,φ

∑
(i,j)∈A

∑
k∈K

cijkxijk (11)

s.t.
∑

j:(i,j)∈A

xijk −
∑

j:(j,i)∈A

xjik ≤ bik, ∀ i ∈ N, k ∈ K, (12)

∑
j:(j,i)∈A

∑
k∈Kψ

xjik ≥ 1, ∀ i ∈ Nd, ψ ∈ ΨD, (13)

∑
j∈N,

i′∈Nd
iψ :(j,i′)∈A

∑
k∈Kψ

xji′k ≥ 1, ∀ i ∈ Nd, ψ ∈ ΨP , (14)

uik − ujk +M1xijk ≤M1 − 1, ∀ (i, j) ∈ A, k ∈ K, (15)

tik + τijk ≤ tjk +M2(1− xijk), ∀ (i, j) ∈ A, k ∈ K, (16)

57

tjk ≤ tik + ωτijk +M2(1− xijk), ∀ (i, j) ∈ A, k ∈ K, (17)

tik ≤M2

∑
j:(j,i)∈A

xjik, ∀ i ∈ N, k ∈ K, (18)

tik ≤ UBi, ∀ i ∈ Nd, k ∈ Kψ, ψ ∈ ΨD, (19)

LBi ≤ tik, ∀ i ∈ Nd, k ∈ Kψ, ψ ∈ ΨD, (20)∑
j∈Nd

iψ

∑
k∈Kψ

φijk = 1, ∀ i ∈ Nd, ψ ∈ ΨP , (21)

LBi −M2(1− φijk) ≤ tjk ∀ i ∈ Nd, j ∈ Nd
iψ, k ∈ Kψ, ψ ∈ ΨP , (22)

tjk ≤ UBi +M2(1− φijk) ∀ i ∈ Nd, j ∈ Nd
iψ, k ∈ Kψ, ψ ∈ ΨP , (23)

LBi = LBi + δαi, ∀ i ∈ Nd, (24)

UBi = UBi + δαi, ∀ i ∈ Nd, (25)

xijk ∈ {0, 1}, ∀ (i, j) ∈ A, k ∈ K, (26)

tik ≥ 0, ∀ i ∈ N, k ∈ K, (27)

αi ∈ Z+, ∀ i ∈ Nd, (28)

φijk ∈ {0, 1}, ∀ i ∈ Nd, j ∈ Nd
iψ, k ∈ Kψ, ψ ∈ ΨP , (29)

uik ≥ 0, ∀ i ∈ N, k ∈ K. (30)

The formulation seeks to minimize the total travel costs of all assets traversing the

network (11). Constraint (12) enforces the conservation of flow for the movement of

all assets without requiring assets to return to their respective origins. Constraint (13)

ensures that each demand node is visited by at least one asset k of each type ψ ∈ ΨD

that cannot provide service proximally. Constraint (14) ensures that at least one asset

k of each type ψ ∈ ΨP visits a node i′ ∈ Nd
iψ from which it can proximally service

demand i ∈ Nd. Constraint (15) applies the MTZ subtour elimination constraints.

Constraints (16) and (17) calculate the time of each asset as it moves through the

network. Within Constraint (17), the term ωτijk documents an implied assumption

58

that assets may slow down to 1/ω of the fasted speed at which they can traverse

arc (i, j) to coordinate synchronize times at demands. An alternative assumption is

possible and should be application-specific. Constraint (18) ensures any non-moving

asset does not receive a positive tik-value for any node, a constraint imposed to prevent

solvers from reporting alternative basic feasible solutions that do not represent time

accurately.

Constraints (19) and (20) collectively impose the time window for every asset

type ψ ∈ ΨD to visit demand node i ∈ Nd. For asset types ψ ∈ ΨP , Constraint (21)

identifies the proximal node j ∈ Nd
iψ from which asset k ∈ Kψ provides service to

demand node i ∈ Nd. Such a decision imposes the time window for proximal service

via Constraints (22) and (23).

Finally, Constraints (24) and (25) compute the lower and upper bounds for ad-

justable time windows for each demand node, and Constraints (26)-(30) enforce the

respective, appropriate restrictions on the decision variables.

The resulting CoVRP-PS formulation is directly solvable via any of a number

of readily available, commercial solvers. However, the NP-hard nature of the VRP,

for which the nuances of this formulation are expected to further complicate, mo-

tivates the development of customized solution methods to improve computational

tractability over what a commercial solver will attain.

3.3 Solution Methodology

Preliminary testing of CoVRP-PS instances using the solver Gurobi (Version

9.5.1) confirmed the aforementioned intuition regarding computational challenges,

compelling the design and evaluation of alternative solution methodologies.

Figure 11 depicts several alternative solution methodologies to solve CoVRP-PS

instances. An answer of ‘no’ to every question entails solving an instance directly, as

59

formulated. An answer of ‘no’ to the first question and ‘yes’ to a decomposition of

the problem by asset type entails solving the problem in two stages, for which Section

3.3.1 details two alternatives. These heuristics can be enhanced with a preprocess-

ing technique to impose lower bounds on the αi-values, and Section 3.3.2 sets forth

two such techniques. Because complications arising from the model decomposition

approach motivates the use of preprocessing techniques, Section 3.3.1 discusses the

former heuristic component before Section 3.3.2 details the latter component.

Additionally, Section 3.3.3 identifies a fundamentally different heuristic approach

entailing a maximal decomposition of the problem. We detail the conceptual proce-

dure herein, but we set it aside for testing as a sequel effort to this dissertation.

CoVRP-PS
instance

Apply
preprocessing

technique?

Decompose
problem by
asset types?

Impose lower
bounds on
𝛼𝛼𝑖𝑖-values

Solve CoVRP-PS
for first subset of
asset types and
affix 𝛼𝛼𝑖𝑖-values

Solve CoVRP-PS
for remaining

asset types

Solve CoVRP-PS
instance

Terminate heuristic

Section 3.1

Section 3.2
Yes

Yes

No

No

Maximally
decompose
problem?

Yes

No

Apply maximal
decomposition

heuristic

Section 3.3

Figure 11. Solution methodology flowchart

60

3.3.1 Two-stage Model Decomposition Heuristic

Notable complicating aspects of the CoVRP-PS model are the different types of

assets ΨD and ΨP , and the different manners in which those asset types can service

demands. Proximal service capabilities require a non-trivial number of additional

φijk-variables. Logically, solving the problem for only the asset types ΨD should be

much easier.

Accordingly, testing in Section 3.4 considers a model decomposition heuristic that

first routes the asset types in ΨD, solving CoVRP-PS in the absence of ΨP -specific

decision variables and constraints. Affixing the αi variables from the solution as pa-

rameters, it subsequently routes the asset types ΨP in the absence of decision variables

and constraints related to adjusting the time windows. An alternative permutation

sequentially routes asset types ΨP , affixes the αi-variables, and routes asset types ΨD.

This latter approach is not expected to perform as well, given the first problem must

address the complications of both adjustable time windows and proximal service in

the first problem. In contrast, routing asset types ΨD before asset types ΨP allocates

these two computationally challenging model characteristics to two different math

programs.

By decomposing the problem, this solution method entails a heuristic approach

to solve a CoVRP-PS instance because an optimal solution might not be attainable.

The myopic, optimal routing of the first subset of asset types may affix αi-values

suboptimally with respect to the original problem.

More challenging, initial testing of this heuristic identified its potential failure to

identify a feasible solution. Given a feasible CoVRP-PS instance, the problem of

routing the first subset of assets is always feasible. However, the affixed αi-values

may render the subsequent routing problem(s) infeasible. Instance characteristics

that made this outcome more likely were either routing proximally servicing asset

61

types first or having a fewer number assets of a given type – relative to the first

asset type(s) considered – to route after αi-values are affixed. In the former case,

asset types providing proximal service may not need as much time to service all

demands compared to asset types ΨD, and the resulting, affixed time windows may

induce an infeasible, second-stage problem. In the latter case, without regard to the

permutation of the model decomposition heuristic, affixed time windows determined

by routing many assets in the first-stage problem may be infeasible for a lesser number

of assets to be routed in the second-stage problem.

3.3.2 Preprocessing Techniques to Bound Service Time Window Shifts

Without loss of generality, denote the first and second sets of sequentially routed

asset types via the model decomposition heuristic as Ψ1 and Ψ2. Initial testing iden-

tified the potential for a model decomposition approach to fail. That is, it sometimes

identified an optimal CoVRP-PS solution for asset types Ψ1, affixing demand-specific

time windows such that the CoVRP-PS instance for routing asset types Ψ2 was in-

feasible. This potential inability of the decomposition heuristic to identify a feasible

solution motivates preprocessing techniques to impose lower bounds on the αi-values.

We consider preprocessing techniques to impose lower bounds on αi-values via

Constraint 31 when routing asset types Ψ1 such that, upon affixing the αi-values,

it is less likely that the problem of routing asset types Ψ2 is infeasible. Any such

preprocessing technique should be conceptually sound and computationally efficient.

αi ≥ αLBi , ∀ i ∈ Nd (31)

The objective of a preprocessing technique is to estimate the latest time by which at

least one asset k ∈ Kψ of every type ψ ∈ Ψ2 can service a demand at node i ∈ Nd.

Define αik to be the least number of service time window shifts necessary for asset

62

k ∈ Kψ, ψ ∈ Ψ2 to service demand i ∈ Nd; and αiψ = min
k∈Kψ
{αik} to be the least

number of service time window shifts necessary for asset type ψ to service demand

i ∈ Nd. By definition, Equation (32) identifies a valid αLBi that will not eliminate an

optimal solution to the original CoVRP-PS instance.

αLBi = max
ψ∈Ψ2
{αiψ} (32)

Of note, Equation 32 may not generate tighter lower bounds on the optimal αi-values

for the original CoVRP-PS instance. As such, it is of interest to explore preprocess-

ing techniques that overestimate αLBi to improve the likelihood of a decomposition

heuristic identifying a feasible solution to the original problem, even though it may

eliminate the optimal solution.

Remaining is to identify the means by which a preprocessing technique estimates

the αik-values. Our research considers two conceptual approaches, hereafter identified

by the routing technique used to compute αik-values: the Floyd-Warshall and Nearest

Neighbor preprocessing techniques.

Floyd-Warshall Technique

This estimation technique assumes each asset k ∈ Kψ, ψ ∈ Ψ2 traverses the net-

work at its slowest rate (i.e., τk = max(i,j)∈A{τijk}) and travels directly to each demand

node i ∈ Nd. It applies the Floyd-Warshall Algorithm (Floyd, 1962) to compute the

minimum distance dik between every source node for an asset k ∈ Kψ, ψ ∈ Ψ2 and

every demand node i ∈ Nd. Subsequently, it estimates αik-values via Equation (33).

αik =

 0 (dik/τk) ≤ UB⌈(
(dik/τk)− UB

)
/δ
⌉

otherwise
(33)

63

Admittedly, this technique is imperfect. First, it may overestimate αik-values because

of its pessimistic assumption about the assets’ common rate of travel. Second, it may

underestimate αik-values by underestimating the distance an asset will travel to reach

a demand i ∈ Nd because the shortest paths between source nodes for assets and

demand nodes do not account for the need to route assets to service multiple demand

nodes.

For example, consider a singleton set Kψ for an asset of type ψ ∈ Ψ2. Given

demand nodes Nd = {8, 9} and asset k = 7, the Floyd-Warshall technique may

calculate d87 = 2 and d97 = 4. However, asset k = 7 must service both demand nodes,

and a shortest route would first visit Node 8 and subsequently travel 3 units of distance

to reach Node 9. For such a case, the Floyd-Warshall technique would underestimate

α97 by 25%. The optimal solution to the first-stage problem may affix the αi-values

too low, and the decomposition heuristic leveraged with this preprocessing technique

may not be able to identify a feasible solution to the second-stage problem.

Alternatively, one could certainly calculate αik-values by separably routing every

asset type ψ ∈ Ψ2 via a much reduced version of CoVRP-PS, but we set aside this

notion as counterproductive in terms of computational effort. Such an approach

would involve solving 2 + |Ψ2| math programs, none of which is a trivial endeavor.

Nearest Neighbor Technique

Seeking a fast technique to reduce the potential underestimate of αik-values, we

leverage a Nearest Neighbor approach. For each k ∈ Kψ, ψ ∈ Ψ2, we apply the Nearest

Neighbor heuristic (Fix and Hodges Jr, 1952) to visit every demand node. Defining

dik as the distance travelled by asset k to reach node i, the procedure calculates the

αik-values via Equation (33).

64

Enhancement of Both Preprocessing Techniques

Additionally imposed constraints in the first-stage problem better preserve time

for assets types in the second-stage problem to service demand nodes. As a motivating

example, consider Nd = {6, 7} and αLB6 = 4 and αLB7 = 2 via the Equation 32. In

the first stage problem, assets types Ψ1 service the demands using time window shifts

of α6 = 4 and α7 = 4. If those αi-values are affixed for the second-stage problem,

it may be infeasible because a narrow time window may not allow a fewer number

of subsequently routed assets to service all demand nodes. Instead, it is relevant to

preserve the magnitude of differences in αLBi -values as well.

We preserve this magnitude for both preprocessing techniques as follows. We first

sort the demand nodes in ascending order of αLBi -values, as calculated via Equation

(32). Denoting sequential pairs in this sorted list as (i, i′) ∈ S, we define αoffsetii′ =

αLBi′ − αLBi . Subsequently, we impose Constraint (34) in addition to Constraint (31)

when solving the first-stage problem within the model decomposition heuristic.

αi′ ≥ αi + αoffsetii′ , ∀ (i, i′) ∈ S (34)

On the Use of Preprocessing Techniques for the General Problem

By leveraging a simple routing heuristic that may not find the minimal routing

distances for asset k to service each demand, this preprocessing technique used in

combination with a model decomposition heuristic may not identify an optimal solu-

tion to CoVRP-PS, but it will increase the likelihood of a feasible solution found in

the second-stage problem.

Although the development of the preprocessing techniques is intended to help

resolve identified issues with the model decomposition heuristic, they may also help

a commercial solver identify a feasible CoVRP-PS instance more efficiently. Defining

65

Ψ1 = Ψ and Ψ2 = ∅, either preprocessing technique can rapidly identify additional

bounds on αi-values for the CoVRP-PS formulation. Such bounds should reduce

the feasible region and improve solver convergence, a conjecture that testing in the

Section 3.4 examines.

3.3.3 Maximal Decomposition Heuristic

As an alternative to the heuristic described in Section 3.3.1, we also set forth a

maximal decomposition heuristic that foremost emphasizes computational efficiency.

It routes one asset type at-a-time, initially ignoring the requirement they collabo-

rate. For each asset type, it first solves an assignment problem to assign demands to

assets at their originating nodes while minimizing the average assignment distance.

It subsequently routes each asset to service its assigned demands, either directly or

proximally, as appropriate. Assembling the collective routing solutions for the differ-

ent asset types, the heuristic determines whether the solution is feasible with respect

to the adjustable time windows. As a broad characterization, we expect this heuristic

to rapidly identify infeasible solutions more often than feasible solutions. As such,

we forgo its testing in this dissertation, but we will explore it in a sequel effort to

address a question raised by a reviewer from a journal for which this contribution is

being considered for publication.

3.4 Testing, Results, and Analysis

Section 3.4.1 presents a CoVRP-PS instance and its optimal solution to illustrate

the problem and motivate the subsequent testing regimen. Section 3.4.2 discusses the

manner utilized to generating test instances and explores the effect of six problem

factors on the required computational effort by a leading commercial software to solve

CoVRP-PS instances directly, culminating with the presentation of a designed exper-

66

iment for comparative testing of alternative solution methods. For that experiment,

Section 3.4.3 reports and discusses the detailed performance attained via the com-

mercial solver, providing evidence of the need for alternative solution methodologies.

Section 3.4.4 compares the performance of the nine alternative solution methods that

leverage combinations of model decomposition heuristic permutations and prepro-

cessing techniques. This section concludes with general insights regarding solution

method use vis-á-vis CoVRP-PS instance parameter characteristics.

3.4.1 Illustrative CoVRP-PS Instance

We illustrate a representative instance of the CoVRP-PS formulation. This in-

stance has |Ψ| = 3 asset types and |K| = 3 total assets to route and service |Nd| = 3

demands. For simplicity, k = ψ, ∀ k ∈ K, i.e., Kψ, ∀ ψ ∈ Ψ are singletons. As-

set types ΨD = {1, 2} must provide direct service to demands, whereas asset type

ΨP = {3} may service demands proximally by visiting an adjacent node in the net-

work.

For a network G(N,A), we consider a regular hexagonal tessellation of a planar

region, a discretization technique embraced in the literature for routing assets not

restricted to a road network (e.g., Lunday et al., 2012; Lessin et al., 2018), which is

superior to alternative tessellations via squares or triangles for its balance between

result model granularity and tractability (Yousefi and Donohue, 2004). Figure 12a

depicts the network having |N | = 30 numbered nodes and |A| = 36 arcs. Within

the figure, red stars denote the demand nodes Nd = {5, 17, 28}, whereas a purple

diamond, blue circle, and green triangle respectively indicate the origins of assets

k = 1, 2, 3 at Nodes 23, 13, and 14 (i.e., b23,1 = b13,2 = b14,3 = 1).

We affix cijk = 1, ∀ (i, j) ∈ A, k ∈ K, making the objective function equivalent

to minimizing the number of arcs traversed. Setting ω = 2 allows assets to slow

67

down to half their fastest speed to trasverse an arc, as necessary. For asset arc

traversal times, (τij1, τij2, τij3) = (0.8, 1, 0.8) , ∀ (i, j) ∈ A, indicating asset k = 2

cannot travel as fast as the other assets. This instance has initial service windows

of
[
LBi, UBi

]
= [2, 4] , ∀ i ∈ Nd, and δ = 3 as the service window shift increment.

These latter parameters deliberately render certain time windows (e.g., (4, 5), (7, 8))

infeasible for servicing any demand.

(a) Initial Position-
ing

(b) k = ψ = 1 Rout-
ing

(c) k = ψ = 2 Rout-
ing

(d) k = ψ = 3 Rout-
ing

Figure 12. Illustrative Instance Network and Optimal Asset Routing

Figures 12b-12d respectively depict an optimal routing solution of assets 1, 2, and

3, and Table 2 reports the elements of the optimal solution related to the spatiotem-

poral servicing of demands. The first two rows of Table 2 present the number of time

increment shifts applied for the respective demands, followed by the resulting service

window. The next two rows report the time at which assets k = 1, 2 serviced the

demands, and the final two rows indicate the node j|φij3 = 1, ∀ i ∈ Nd from which

asset k = 3 serviced the demands and the time at which it occurred.

68

Table 2. Demand-specific Characteristics for the Optimal Solution to the Illustrative
Instance

Solution Demand Nodes Nd

Characteristic i = 5 i = 17 i = 28
αi 1 3 5

(LBi, UBi) (5,7) (11,13) (17,19)
ti1 7.0 12.6 17.0
ti2 7.0 11 19.0

j|φij3 = 1 4 18 27
tj3 6.4 12.8 17.6

Within Figures 12b-12d, assets k = 1, 2, 3 respectively traversed 15, 14, and 11

arcs to service the demands, corresponding to z∗ = 40. Whereas assets k = 1 and

k = 2 visited each demand, asset k = 3 only directly visited the demand at node

i = 5. However, asset k = 3 serviced every demand proximally, as the next-to-last

row in Table 2 indicates. In fact, asset k = 3 travelled by demand node i = 5 before

servicing it from node j = 4, although an alternative optimal solution of servicing

it directly exists. Due to temporal constraints (19)-(23) requiring all assets arrive

within a time window, asset k = 3 delays its servicing of demands and routes to the

three demand nodes via a path that is not cost-minimizing. Compelling this outcome

is the slower speed of asset k = 2, which arrives at the upper bound of the shifted

time window determined for demand Nodes 5 and 28. Thus, slower assets may require

faster assets to take longer routes to coordinate service times. Of note, only the width

of the service time window for the demand at Node 28 was fully utilized, with assets

arriving at the beginning (k = 2) and end (k = 1) of its shifted service window. This

solution indicates the existence of alternative optima in the tik-space and tjk-space,

e.g., asset k = 3 did not need to service Node 28 at exactly t27,3 = 17.6.

Of related interest is the ability of the model to prescribe and modulate rates of

travel for assets, as allowed via Constraints (16) and (17). Decomposing the paths

depicted in Figures 12b-12d to the three demand-serving component paths, Table 3

reports the average speeds (i.e., arcs per time period) for each asset when traversing

69

the network to service each subsequent demand. Of note, no asset travelled at either

its minimum or maximum speed when moving to service a demand, and only asset

k = 3 travelled at a consistent average speed for each of the demands. This result

confirms the existence of alternative optima, and extensions to the proposed model

might consider additional objectives, such as minimizing the variation in speed for

assets as they traverse the network.

Table 3. Number of Arcs Travel Per Time Period

(Min,Max) Demand Serviced
Asset Arcs Traveled i = 5 i = 17 i = 28

1 (0.63, 1.25) 0.71 0.71 1.14
2 (0.50, 1.00) 0.86 1.00 0.63
3 (0.63, 1.25) 0.63 0.63 0.63

In general, the results in Figure 12 and Tables 2 and 3 collectively demonstrate

the model’s ability to prescribe an optimal solution to a CoVRP-PS instance that

ensures collaborative service of demands by different asset types, a subset of which

may service demands proximally.

3.4.2 Test Instance Generation and Computational Test Design

To assess the relative ability a commercial solver to solve CoVRP-PS instances

directly and to compare its performance against alternative solution methods, it is

important to identify the relevant problem features that affect solver performance.

Exploratory testing identified six features suspected to affect solver convergence time.

Subsequent testing examined the effect of the number of nodes in the network; the

number of demand nodes; the number of assets of different types to route; the service

window shift increment δ; the service window width
(
UBi − LBi

)
; and the earliest

possible service time LBi. This section discusses that testing and the identified fea-

tures to inform a designed experiment for comparative testing, as detailed in Section

3.4.4.

70

Testing utilized the following method to generate CoVRP-PS instances. Given a

number of nodes |N |, the number of regular hexagons in a column of tessellated planar

space is equal to the number of columns. In combination with this network design, |N |

induces the arcs A and network G(N,A). (Of course, |N |-values under this scheme

are limited to values that yield such a network.) The demand nodes Nd are located

in the respective center, lower left, upper right of the network. From the illustrative

instance in Section 3.4.1, testing retained Ψ = {1, 2, 3} asset types with ΨD = {1, 2}

and ΨP = {3}. It affixed |K1| = |K2| = 2|K3| as the number of assets of each

type to represent the expected need for fewer assets providing proximal service (e.g.,

command-and-control assets), as described for the motivating civil scenario in Section

3.1. The origins for assets of types in ΨD are located in the upper left and lower right

of the network, whereas the origins for assets of types ΨP are on the left and/or right

sides of the network. Figure 13 depicts an example network for |N | = 96, |Nd| = 5,

and (|K1|, |K2|, |K3|) = (4, 4, 2). For hexagonal meshes having the same number of

hexagons in a column as the number of columns, this arrangement of demands vis-

á-vis assets of different types and their disparate origins requires routing decisions

that coordinate the sequence with which demands are serviced, the routing of assets

along different paths, and the synchronization of their servicing of specific demands in

non-trivial scenarios. Emulating the convention from Figure 12, the red stars within

Figure 13 denote the demand nodes, and the purple diamonds, blue circles, and green

triangles respectively indicate the origins of assets of type ψ = 1, 2, 3. This collective

dispersion of demand nodes and originating asset locations represents the disparate

basing of assets, ensures comparison of solution method performance across different

network sizes is reasonable, and challenges the solution methods.

Test instance generation retained cijk = 1, ∀ (i, j) ∈ A, k ∈ K from the illustrative

instance in Section 3.4.1, and it affixed τijk = 0.8, ∀ (i, j) ∈ A, k ∈ K1∪K3 and τijk =

71

Figure 13. Example Test Network and Placement of Demand Nodes and Assets

1, ∀ (i, j) ∈ A, k ∈ K2. Each demand within an instance has the same designated

service window width and earliest possible service time. Different such demand-

specific parameters are certainly possible and are important for some applications; we

use common initial values to simplify the generation of instances, avoid generating an

infeasible CoVRP-PS instance (e.g., wherein a demand-specific service window would

require an asset to slowly traverse more arcs than exist in the network), and enable

a more direct comparison of alternative solution methods via this technique during

computational testing in subsequent sections.

All testing was performed on an Intel(R) Core(TM) i7-10875H CPU @2.30GHz

with 128 GB of RAM on a 64-bit operating system, and using Python (Version 3.9.7)

with the GurobyPi package to invoke the commercial solver Gurobi (Version 9.5.1).

Alternative termination criteria were 600 seconds (i.e., 10 minutes) of computational

effort and an identified 0.0005% relative optimality gap.

Testing explored the six potentially significant problem factors by solving one

instance at each of 162 combinations of factor levels, given three levels for each factor

except for the number of asset routed. Testing considered such levels, routing either

5 or 10 total assets. Analysis of the results identified all but LBi to be a significant

72

factor, with its p-value equal to 0.5292 and all others below 0.009. Of note, the levels

of each factor were comparable to the recommended testing regime in Table 4, with

two exceptions. First, Table 4 omits the levels for the factor determined to not be

significant (i.e., LBi = 0, 2, 5, ∀ i ∈ Nd). Second, this initial testing only explored

|N | = 48, 96, 160.

As intimated, Table 4 presents the CoVRP-PS selected problem parameters and

their respective levels for comparative testing of the nine alternative solution meth-

ods. Subsequent testing also considers a fourth level of |N | = 240 to challenges the

solution methods. With respect to the LBi-values, all subsequent instances affix these

at 2 because earlier service times are not attainable for any demand, in any instance

because of the network topology and dispersion of both demands and assets. Subse-

quent testing examined 1944 combinations of nine alternative solution methods, each

applied to the 216 instances corresponding to the parametric variations listed in Table

4.

Table 4. Varied Problem Parameters and Levels Explored for the Designed Experiment

Parameter Levels Explored
|N | 48, 96, 160, 240
|Nd| 1, 3, 5
(|K1|, |K2|, |K3|) (2, 2, 1), (4, 4, 2)
δ 1, 3, 5(
UBi − LBi

)
, ∀ i ∈ Nd 2, 6, 10

3.4.3 Performance of Direct Optimization

Testing first examined Gurobi for solving CoVRP-PS instances directly, without

the use of a model decomposition heuristic or a preprocessing technique. Tables

5 and 6 report the testing results for respective (|K1|, |K2|, |K3|)-values of (2, 2, 1)

and (4, 4, 2). The first row in each table indicates the δ-value, and the second row

indicates the service time window UB − LB, indicated as without demand-node

specific indexing. The first and second columns respectively denote the number of

73

nodes |N | and the the number of demand nodes |Nd|. For every such parametric

combination, Tables 5 and 6 report the runtime (i.e., RT, in seconds) and the relative

optimality gap identified upon termination. An entry of an asterisk ∗ indicates Gurobi

did not identify a feasible solution after 600 seconds of computational effort.

Gurobi was able to identify a feasible solution for 80.6% of instances. The smallest

instances for which Gurobi consistently could not identify a feasible solution entailed

routing 5 assets over a network with 160 nodes to service 5 demands. The solver had

similar difficulties routing 5 assets to service only 3 demands over a network having

240 nodes. For the latter case, Gurobi was only able to identify a feasible solution

for 3 instances comprised of parametric variants of δ and (UB − LB).

Over the 174 instances for which Gurobi did find a feasible solution, it required

an average of 80.0 seconds of computational effort and identified solutions having an

average relative optimality gap of 11.8%. Gurobi identified a global optimal solution

for 101 instances (i.e., 46.8%) of the 216 tested. Focusing on the remaining 33.8% of

instances, the average reported relative optimality gap was 28.1%.

Readily discernible in Tables 5 and 6, Gurobi struggled to find high quality solu-

tions when solve instances with a large network size (i.e., |N | ≥ 96) and a relatively

higher number of demands (i.e., |Nd| ≥ 3), more so with smaller service time win-

dows. Larger (UB−LB)-values did yield better solver performance. Such an outcome

results from the existence of alternative optima when routing assets due to both alter-

native routes over a regular, tessellated mesh network and alternative timing for some

assets on a given route that will service demands within the adjusted time window.

However, a larger time service window may not be suitable for a CoVRP-PS applica-

tion, depending on how nearly simultaneous the asset types’ collaborative service of

demands must be. By comparison, the δ-parameter did not exhibit a notable trend

in outcomes.

74

Table 5. CoVRP-PS Testing Results for (|K1|, |K2|, |K3|) = (2, 2, 1)

δ = 1 δ = 3 δ = 5
UB − LB 2 6 10 2 6 10 2 6 10

RT Rel RT Rel RT Rel RT Rel RT Rel RT Rel RT Rel RT Rel RT Rel
|N | |Nd| (sec) Gap (sec) Gap (sec) Gap (sec) Gap (sec) Gap (sec) Gap (sec) Gap (sec) Gap (sec) Gap

1 0.3 0 0.2 0 0.2 0 0.4 0 0.2 0 0.2 0 0.4 0 0.2 0 0.2 0
48 3 2.6 0 1.4 0 3.4 0 6.2 0 0.8 0 0.8 0 9.1 0 1.2 0 0.8 0

5 15.3 0 1.3 0 0.5 0 10.5 0 4.3 0 0.5 0 18.4 0 4.2 0 0.6 0
1 1.9 0 1.5 0 1.5 0 1.8 0 1.6 0 1.6 0 1.4 0 1.7 0 1.2 0

96 3 600.3 0.04 600.3 0.01 278.6 0 600.3 0.01 600.3 0.01 268.5 0 600.2 0.06 600.3 0.01 251.1 0
5 600.1 0.14 189.8 0 101.6 0 * * 208.9 0 53.4 0 600.3 0.14 600.4 0.07 202.5 0
1 221.5 0 377.9 0 332.3 0 229.3 0 276.6 0 288.9 0 600.4 0.06 259.8 0 312.4 0

160 3 600.1 0.37 600.1 0.33 600.1 0.32 600.1 0.27 600.1 0.27 600.1 0.32 600.1 0.39 600.1 0.36 600.1 0.31
5 * * * * * * * * * * * * * * * * * *
1 600.1 0.31 600.1 0.27 600.1 0.24 600.1 0.29 600.1 0.27 600.1 0.24 600.1 0.33 600.1 0.27 600.1 0.29

240 3 * * * * * * 600.4 0.75 * * 600.2 0.56 * * 600.2 0.56 * *
5 * * * * * * * * * * * * * * * * * *

* Gurobi terminated after 600 seconds without identifying a feasible solution

Table 6. CoVRP-PS Testing Results for (|K1|, |K2|, |K3|) = (4, 4, 2)

δ = 1 δ = 3 δ = 5
UBi − LBi 2 6 10 2 6 10 2 6 10

RT Rel RT Rel RT Rel RT Rel RT Rel RT Rel RT Rel RT Rel RT Rel
|N | |Nd| (sec) Gap (sec) Gap (sec) Gap (sec) Gap (sec) Gap (sec) Gap (sec) Gap (sec) Gap (sec) Gap

1 0.3 0 0.3 0 0.3 0 0.5 0 0.3 0 0.3 0 0.9 0 0.3 0 0.3 0
48 3 3.5 0 1.0 0 0.9 0 14.0 0 1.0 0 1.1 0 331.2 0 1.1 0 1.0 0

5 5.3 0 1.1 0 1.2 0 51.3 0 1.3 0 1.5 0 31.4 0 1.6 0 1.2 0
1 3.8 0 3.4 0 3.3 0 12.4 0 3.4 0 3.0 0 5.0 0 4.2 0 4.1 0

96 3 600.2 0.01 600.1 0.01 393.7 0 600.1 0.06 409.9 0 245.9 0 600.1 0.13 343.3 0 301.4 0
5 600.1 0.07 41.0 0 36.5 0 600.1 0.09 38.2 0 39.2 0 600.1 0.13 86.6 0 38.4 0
1 600.1 0.11 600.2 0.11 600.2 0.11 600.1 0.18 545.4 0 600.1 0.07 600.2 0.21 592.1 0 600.2 0.15

160 3 600.1 0.36 600.2 0.38 600.1 0.33 600.1 0.40 600.2 0.39 600.1 0.36 600.2 0.42 600.1 0.40 600.1 0.38
5 * * * * 600.2 0.18 * * * * 600.2 0.17 * * * * 600.6 0.22
1 600.1 0.37 600.1 0.40 600.1 0.34 600.1 0.42 600.1 0.34 600.2 0.37 600.2 0.40 600.2 0.34 600.1 0.37

240 3 * * 600.5 0.55 600.2 0.56 600.2 0.57 600.2 0.55 600.3 0.56 * * 601.1 0.55 600.8 0.53
5 * * * * * * * * * * * * * * * * * *

* Gurobi terminated after 600 seconds without identifying a feasible solution

75

In aggregate, Gurobi performed well, but it did struggle within the 600 second limit

on computational effort to find high quality solutions and eventually to find feasible

solutions as instance sizes grew, more so with low δ-values. We find this shortcoming

when solving more challenging CoVRP-PS instances to merit the comparative analysis

of alternative solution methods in the following section.

3.4.4 Comparative Testing Results on Tessellation Induced Networks

Comparing the nine different models explored directly allows for an examination

of their relative efficacy. Of interest is not only the ability to find feasible solutions

consistently within a bounded amount of computational effort, but also the relative

quality of the solutions that are found. To simplify the presentation of results and

corresponding discussions, Table 7 provides the abbreviations for the nine solution

methods.

Table 7. Model Abbreviation Guide

Model Decomposition Preprocessing Technique

(Ψ1,Ψ2) None Floyd-Warshall Nearest Neighbor

(Ψ, ∅)* G FG NG

(ΨD,ΨP) DP FDP NDP

(ΨP ,ΨD) PD FPD NPD

* Indicates no model decomposition

Whereas G (i.e., solving an instance directly with Gurobi), FG, and NG ter-

minated after 600 seconds of computational effort if an optimal solution was not

identified, all other solution methods allotted 300 seconds to each of the subsequent

optimization problems for the model decomposition heuristic to provide an equitable

amount of time to solve the instances. The preprocessing techniques were quick, re-

quiring no more than 6 seconds for the largest test instance, so testing did not impose

a time limit on either of them.

Figure 14 presents the aggregate results of applying the nine combinations of model

76

decomposition heuristic and preprocessing technique to the 216 test instances. The

location of a solution method in each subfigure corresponds to its performance with

respect to two metrics. In Figure 14a, the vertical axis indicates the percentage of

instances for which a solution method identified a feasible solution within 600 seconds,

whereas the horizontal axis indicates, for those instances, the percentage of which

that solution method identified the best reported solution among the nine solution

methods. Within Figure 14a, the red diamond denotes the ideal point (Ehrgott,

2008): identifying a feasible solution for every instance and it always being the best

one found. Either a blue circle or a green star indicates the performance for each of the

nine solution methods. The green star indicates the performance is Pareto optimal;

no other method dominates its performance with respect to both metrics. All Pareto-

optimal models are considered equally good, given a set of valued performance metrics

(Bazaraa et al., 2008). In Figure 14b, the vertical axis is the same as Figure 14a, and

the horizontal axis indicates a different solution quality metric: the average relative

gap (%) for identified feasible solutions, as compared to the best solutions identified

by all solution methods. This latter metric helps identify a solution method that

may not often find the best solution but consistently finds (relatively) high quality

solutions. The red diamond again indicates an ideal point, and the green stars denote

Pareto optimal performance by solution methods.

(a) Best Reported Solutions (%) (b) Average Relative Gap (%) from
Best Solution Found

Figure 14. Average Performance of 9 Solution Methods over All Test Instances

77

Within Figure 14a, G is Pareto optimal. Although it did not find a feasible

solution for the greatest percentage of instances, it did find the best solution for the

highest percentage of instances for which it did find a feasible solution. The tradeoff

in performance metrics is non-trivial. To find a feasible solution to 5-10% more of the

instances (e.g., via FPD, NDP, or NPD) would require a sacrifice, dropping to those

solutions being the best identified only 62% or possibly as low as 33% of the time.

Figure 14b better illustrates the performance of FPD. Whereas G solutions were

within 1.5% of the best reported, on average, the FPD solutions were within 2.7%. In

contrast, NDP and NPD did not do well in Figure 14b; their identified solutions had a

16% relative gap from the best reported solutions, on average. DP and PD were also

Pareto optimal in Figure 14b, but their relatively poor performance for identifying

solutions is challenging to endorse.

In terms of the algorithmic components, several trends are identifiable in Figures

14. Either permutation of the model decomposition heuristic in the absence of a pre-

processing technique yielded the worst two performances, in terms of finding feasible

solutions. When combined with the Floyd-Warshall preprocessing technique, the de-

composition heuristic performance identified more feasible solutions with a marginal

degradation in solution quality. By comparison, both model decomposition permu-

tations using the Nearest Neighbor preprocessing technique found more solutions

overall, but with notably lesser solution quality.

Such a relative result between the preprocessing techniques when augmenting

either DP or PD makes sense. The Floyd-Warshall technique applies a very simple

lower bound on the time that must be allotted for the subsequent routing of asset

types Ψ2 when routing asset types Ψ1. Assuming every demand is serviced as quickly

as possible (i.e., as a first priority) in the second stage, the αLBi -values in FDP and

FPD do not eliminate an optimal solution to the original problem. Therefore, any

78

lesser solution quality for these solution methods resulted from an inability to solve

either or both stage-specific problems optimally within 300 seconds.

In contrast, the Nearest Neighbor technique applies a more elegant approximation

of αLBi -values that considers a sequence of servicing demands by asset types Ψ2. This

construct explains the relatively greater ability of NDP and NPD for identifying

feasible solutions. Of note, neither does so for all instances, due in part to routing

different numbers of instances for each type of asset across different stages of the model

decomposition heuristic. Moreover, these cuts may eliminate an optimal solution

because, as a heuristic, the Nearest Neighbor algorithm may overestimate αLBi -values.

Both the higher number of feasible solutions identified and the relatively lesser quality

solutions of NDP and NPD are attributable to such cuts.

Meanwhile, neither preprocessing technique enhanced Gurobi’s average perfor-

mance when solving CoVRP-PS instances directly. With respect to the set of solution

methods, neither FG nor NG demonstrated Pareto optimal performance.

Relative Performance by Network Size Within Section 3.4.3, the num-

ber of nodes |N | challenged Gurobi notably when |N | ≥ 160. As such, it is important

to examine the relative performance of the solution methods with greater nuance.

Figure 15 divides the instances into two sets of 108 instances each: |N | ∈ {48, 96}

(i.e., “small grids”) and |N | ∈ {160, 240} (i.e., “large grids”). Using the same format

for presenting results as Figure 14, Figures 15a & 15b and Figures 15c & 15d respec-

tively illustrate the solution methods’ relative average performance for small grid and

large grid network instances.

Figures 15a & 15b show that G exhibited excellent performance when solving

small grid instances by identifying feasible solutions for 99.1% of instances and, among

them, finding the best solution 98.1% of the time. The only other model that appeared

near Pareto optimal solution method for small grid instances was FG, enhancing a di-

79

(a) Best Reported Solutions (%),
|N | ∈ {48, 96}

(b) Average Relative Gap (%) from
Best Solution Found, |N | ∈ {48, 96}

(c) Best Reported Solutions (%),
|N | ∈ {160, 240}

(d) Average Relative Gap (%) from
Best Solution Found, |N | ∈ {160, 240}

Figure 15. Model Comparison Based on Number of Nodes |N |

rect solution of instances with the Floyd-Warshall preprocessing technique. However,

identifying the same number of feasible solution was accompanied by moderately and

marginally worse performance for the respective solution quality metrics in Figures

15a & 15b.

Other trends for all instances were manifest for small grid instance performances.

Model decomposition methods without preprocessing techniques identified the fewest

feasible solutions. The Floyd-Warshall technique improved that performance with

minor degradation in solution quality, and the Nearest Neighbor technique helped

model decomposition methods find yet more feasible solutions but with a more notable

decrease in average solution quality.

For large grid instances, Figures 15c and 15d exhibit compelling results. Of note,

G is not Pareto optimal. Moreover, the only solution methods that are not Pareto

optimal are the ones that do not leverage either permutation of the model decompo-

80

sition heuristic. Relative trends among the model decomposition heuristic variants

remain consistent with previous observations. PD and DP find the least feasible in-

stances among solution methods on the Pareto front. Enhancing them with the Floyd-

Warshall preprocessing technique identifies more feasible solutions with marginally

worse average solution quality. Enhancing them with the Nearest Neighbor prepro-

cessing technique found the most feasible solutions (∼ 80%) with a disconcerting cost

to solution quality (i.e., within ∼ 15% of the best solution identified, on average).

In aggregate, one may reasonable conclude that a model decomposition heuristic

should be used for instances of CoVRP-PS having a large number of nodes in the

network. Depending on one’s priority between identifying feasible solutions and high

quality solutions, the heuristic should be enhanced with a preprocessing technique.

Considering the results in Figure 15c and 15d, we would recommend using the Floyd-

Warshall preprocessing technique (i.e., either FDP or FPD) based on their relative

proximity to the ideal points of performance.

Relative Performance by Number of Assets Routed Also noted in

Section 3.4.4 was a difference in Gurobi’s performance for G when routing either

five or ten total assets (i.e., with fixed relative numbers of assets, by type). Figure

16 presents the comparative results of the nine solution methods, partitioned by

the number of assets routed. Figures 16a & 16b and Figures 16c & 16d present

the solution methods’ relative average performance for 108 instances each of routing

(|K1|, |K2|, |K3|) = (2, 2, 1) and (|K1|, |K2|, |K3|) = (4, 4, 2) assets.

G is Pareto optimal in every performance comparison within Figure 16. Such a

result implies its general efficacy, but the results in Figures 15c and 15d indicated

otherwise; G does not perform as well as other methods for larger network sizes.

Within that context, its good performance without regard to the number of assets

routed merely indicates this problem parameter is not useful for distinguishing when

81

(a) Best Reported Solutions (%),
(|K1|, |K2|, |K3|) = (2, 2, 1)

(b) Average Relative Gap (%) from
Best Solution Found, (|K1|, |K2|, |K3|) =
(2, 2, 1)

(c) Best Reported Solutions (%),
(|K1|, |K2|, |K3|) = (4, 4, 2)

(d) Average Relative Gap (%) from
Best Solution Found, (|K1|, |K2|, |K3|) =
(4, 4, 2)

Figure 16. Model Comparison Based on Number of Assets Routed

to set aside G in favor of an alternative solution method.

When routing five assets, Figures 16a and 16b exhibit previously noted trends.

The two permutations of the model decomposition heuristic without a prepossessing

technique find the least number of feasible solutions. The Floyd-Warshall prepro-

cessing technique enhances that result with marginally degraded average solution

quality, and the Nearest Neighbor preprocessing technique helps the model decompo-

sition heuristic find a few more feasible solutions with notably worse average solution

quality. Meanwhile, augmenting G with a preprocessing technique does not help.

When routing more assets, the trends in Figures 16c and 16d differ. Only PD

performs poorly with respect to identifying feasible solutions, yet it is still Pareto

optimal because of the relative quality of those solutions, via either performance

82

metric. All other variants of the model decomposition heuristic, with-or-without

preprocessing techniques, identify feasible solutions for over 90% of instances, with

Pareto optimal performance by FDP and NPD for both solution quality metrics.

Relative Performance on the Most Challenging Instances Alternative

examinations of average solution method performance by the different combinations

of δ and UBi − LBi exhibited relative solution method performance consistent with

previously observed trends. Accordingly, we forgo displaying those results in favor of

brevity. As a notable exception, FPD yielded the only Pareto optimal performance

for δ = 5 and UBi − LBi = 10.

Instead, a final examination compared solution method performance on only the

18 instances we identified as most challenging to G: |N | ∈ {160, 240}, |Nd| = 5, and

(|K1|, |K2|, |K3|) = (4, 4, 2). Figure 17 presents the average performance of the nine

solution methods. Of note, neither PD nor NG appear in Figure 17a or 17b; neither

solution method identified a feasible solution for any of the 18 instances. Also, G and

FG performed equivalently, and they are depicted at the same locations in each of

Figures 17a and 17b.

(a) Best Reported Solutions (%) (b) Average Relative Gap (%) from
Best Solution Found

Figure 17. Most Challenging Instances Explored

For these most challenging instances, G is not Pareto optimal. It only found

a feasible solution to 17% of the instances and, although it never found the best

83

solutions, it was within 6% of the best solutions identified, on average.

Both permutations of the model decomposition method when augmented with the

Floyd-Warshall preprocessing technique were Pareto optimal, as was the routing of

proximal-servicing assets first when augmented with the Nearest Neighbor prepro-

cessing technique. As with other comparisons, the FDP and FPD techniques merit

consideration in parametric regimes of CoVRP-PS that challenge G when a balance

is desired between the likelihood of identifying a feasible solution and the solution

quality attained. To maximize the likelihood of identifying a feasible solution, NPD

is recommended, acknowledging that solution quality may not be relatively worse.

As computing resources allow, a parallel implementation of G, FDP, FPD, and NPD

is preferable to identify high-quality, feasible solutions to CoVRP-PS instances in

challenging parametric regimes.

3.5 Conclusions and Recommendations

For a new subclass of the vehicle routing problem, this research set forth a math-

ematical programming model to route assets over a network and service demands,

subject to complicating problem factors. These factors included the collaborative

servicing of demands by different asset types, which we modelled via adjustable time

windows to enforce nearly simultaneous servicing, and the ability of a subset of asset

types to provide service proximally.

Initial testing identified the problem parameters that significantly challenge the

identification of high-quality, feasible solutions by a leading commercial solver. Those

parameters are the number of nodes in the network; the number of demand nodes

to be serviced; the number of assets to be routed; the service window width, as

represented by the imposed time window; and the increment with which that window

may be shifted an integer-valued number of times. Initial testing likewise informed

84

the development of both two permutations of a model decomposition heuristic and

two preprocessing techniques designed to improve their respective performance.

A designed experiment enabled comparative testing of nine resulting solution

methods over a set of 216 test instances. Testing revealed the parametric regimes in

which direct optimization performed poorly, and it identified via Pareto front analysis

the solution methods having the greatest merit. When routing fewer assets to ser-

vice many demands over larger networks, the most feasible solutions were identified

by first routing asset types that provide proximal service, but doing so by imposing

lower bounds on demand service windows, as informed by a Nearest Neighbor pre-

processing technique. This solution method does degrade relative solution quality, so

viable alternatives include bounds informed by a preprocessing technique based on

the Floyd-Warshall algorithm, combined by either permutation of the model decom-

position heuristic. Of course, direct optimization via a commercial solver remains

preferable for easier-to-solve instances.

A natural extension to this work should examine yet larger problems that will

challenge every solution method examined. Such challenges imply the need to apply

a problem decomposition approach that partitions the network, the demands, and/or

the assets to be routed into smaller CoVRP-PS instances. Conceptually simple,

the implementation of such a problem decomposition merits creative thought and

extensive computational evaluation. Of interest are the means by which the problem

can be decomposed and the relative efficacy of the resulting solutions attained via

either direct optimization or one of the better performing alternative solution methods

demonstrated in this research.

85

IV. A Stackelberg Framework for Disrupting Coordinated,
Multi-asset Routing and Sequential Servicing of Demands

This research explores the problem of routing different types of assets having

disparate but complementary capabilities (or commodities to deliver) over a directed

network to service a set of demands sequentially. Given n asset types, an asset of

each type must visit a demand to service it, with Type 1 visiting no later than Type

2, Type 2 no later than Type 3, et cetera, and where the time between first and

last asset arrival is bounded. The network is also subject to outside interference;

actions may slow down asset travel on a subset of arcs within the network, delaying

the servicing of demands. Of interest is how to identify where such interdiction

actions are most effective. From one perspective, such locations are opportunities to

slow deliveries. From the alternative perspective, such locations indicate potential

network vulnerabilities to address either preemptively or with mitigating actions.

Consider the following motivating civil scenarios. Commodities are being trans-

ported to major construction efforts across a region. They require delivery in timely

manners to various sites, and their delivery sequence is relevant (e.g., concrete be-

fore framing material, then electrical conduits and outlets, after which the wallboard

arrives). Traffic congestion can slow traffic on portions of potential delivery routes.

Such delays can disrupt scheduled deliveries. Yet, knowing the locations where delays

are most impactful and rerouting is not helpful will inform where mitigating actions

(e.g., coordinated security escort) have merit.

Similarly, after a natural disaster or heavy storm, some capabilities or commodi-

ties should be delivered as assistance to impacted towns before others (e.g., rescue

equipment and medical assistance are needed before building repair materials). Road

network conditions may be degraded, making travel over certain road segments take

more time. Understanding where road damage would be most impactful can inform

86

decisions regarding where to stage a limited road repair capability.

Alternatively, consider a related military scenario wherein an adversary has intelli-

gence regarding the location of several assets they seek to destroy. First, intelligence,

surveillance, and reconnaissance (ISR) assets must validate current intelligence. Then,

strike assets (e.g., aircraft, vehicles), move to the locations and deliver munitions to

destroy the targets. Such a process to “service demands” is also necessarily sequential

in nature. In a defensive posture, we seek to conduct localized electronic interference,

an aspect of an anti-access/area denial (A2/AD) environment (Alcazar, 2012; Neagoe

and Borşa, 2019). This communication interference can increase travel time in tar-

geted areas of a network, as up-to-date information cannot be refreshed or confirmed.

The desired effect of these actions is to delay the adversary’s attacks and provide time

to move or protect their targets from destruction. Thus, it is of interest to identify

where to apply electronic interference most effectively.

These realistic scenarios accentuate the importance of this research, which iden-

tifies a model and accompanying solution method to address the following problem

statement, as framed for the later, military perspective, but which is valid for either

category of application.

Problem Statement Given a limited budget for arc-specific disruptions,

each of which increases arc travel times, we seek a network interdiction strategy to

maximally delay the cumulative servicing of demands by an adversary having assets

that traverse a network to service multiple demands at different, fixed locations in a

coordinated, sequential manner.

Within this statement, an interdiction strategy consists of actions to disrupt the

flow of assets over the network by delaying them. Hereafter, we use the terms inter-

diction, disrupting action, and delaying action interchangeably.

87

4.0.1 Literature Review

Informative to this research is the literature on bilevel programming, network

interdiction modeling, and corresponding solution methods.

Bilevel Programming Frequently in the literature, one can find the prob-

lem of attacking a network paired with the defense of the same network, represented

via a bilevel program model. These attacker-defender models are a type of Stackelberg

game (Stackelberg, 1952), where the attacker and defender’s actions are sequential.

Given an attack that degrades a network, how will the defender best achieve their

objectives? Given that best response, what attack is most effective? Bilevel pro-

gramming models were originally proposed to model such Stackelberg games that

appear so often in leader-follower games in the market economy (Dempe, 2002). Such

decision-maker objectives compete while subject to their respective set of interdepen-

dent constraints. Applications are seen in highway networks with objectives mod-

eling operating costs, travel time functions, accident costs, and maintenance repair

expenses (Bard, 2013). The preliminaries of the model used in this research assume

that the participants do not exchange information, making cooperation prohibited.

Due to the problem’s non-cooperative nature, participants cannot negotiate, introduc-

ing non-Pareto optimal solutions (Moore and Bard, 1990). The top level participant

is assumed to anticipate the reactions of the lower-level problem and seeks to identify

an optimal strategy accordingly (Colson et al., 2007).

The competitive framework influences the solution methods of a bilevel program

in the problem definition. Many classical bilevel interdiction problems model a zero-

sum game wherein participants compete over a common objective; the upper-level

decision-maker seeks to maximize (or minimize) the minimum (or maximum) value

the lower-level decision-maker can achieve (Smith and Song, 2020). Wood (1993) pre-

88

sented a problem wherein one participant seeks to maximize flow on the network. The

interdictor attempts to minimize the maximum flow by interdicting arcs and limiting

the resource flow a priori. This type of problem scenario is most similar to the work

presented in this research, where participants compete over an objective related to

travel time on the network. Bilevel programs also model non-zero-sum games wherein

the decision-makers have different objective functions. (Dempe et al., 2005) studied

a math programming model for natural gas shippers that attempted to maximize

revenue while minimizing the number of transactions. (Ma et al., 2022) investigated

energy outputs, where the upper-level model maximizes the benefits of sharing en-

ergy storage with a lower-level mode to minimize system operating costs. Expanding

these problems to have multi-objective formulation becomes more nuanced, expand-

ing the problem complexity. For example, (Zhang et al., 2022) formulated a bilevel

programming model with multiple objectives in the upper-level problem, attempting

to minimize total cost and service tardiness of electric vehicle charging stations, and

with a lower-level objective of minimizing total travel time between stations.

Multi-level programming models have a variety of objective functions that vary

depending on the network problem, usually dependent on the defender. Network

defender problems in the literature address maximizing flow (Wood, 1993), minimizing

shortest path lengths and cost network flow (Israeli and Wood, 2002), and maximizing

the probability of evasion (Lunday and Sherali, 2012b). (Starita and Scaparra, 2021)

explored an attacker-defender bilevel program wherein an attacker destroyed arcs,

seeking to maximize congestion in a user equilibrium state. Other network interdiction

problems more closely align with the problem statement set forth by this research,

investigating the Vehicle Routing Problem (VRP) while accounting for time. (Sadati

et al., 2020a) modeled an attacker-defender depot-interdiction model. In a sequel,

(Sadati et al., 2020b) modeled a defender-attacker-defender trilevel program with a

89

VRP in the lowest level. It represented defender protection of depots prior to the

depot interdiction and operation, with competition over composite objective function

related to operating costs, travel costs, and unsatisfied demands.

Aside from a few works explicitly using time in network interdiction models as a

measure of loss of efficiency on asset flow, our review of the literature identified no

research that examines interdiction of multiple assets having relationships as in the

underlying problem, i.e., wherein sequential servicing of demands by different asset

types must occur in an order and within a limited duration of time. Moreover, where

most previous studies explored arc-wise network interdiction to render arcs unusable,

this research allows the use of the affected arcs with increased traversal times as a

consequence.

Network Interdiction Models Network interdiction models are prevalent

in the literature regarding application and solution methods (e.g., see (Smith and

Song, 2020)). Bilevel network interdiction models come in the form of defender-

attacker and attacker-defender models, where the actions of one party occur first,

causing the second party to respond. The underlying problem studied herein could

alternatively be categorized via either framework. For civil applications, interference

with the network could be characterized as an attack, and the decision-maker oper-

ating on the network would be the defender. For military applications, the transit of

multiple asset types over the network may be an attack by an adversary, and prelimi-

nary actions to slow travel would be defensive in nature. For simplicity of discussion,

the remainder of this paper frames the problem as using only one such lens. Hereafter,

we embrace the defender-attacker framework for its conceptual virtue, i.e., degrading

an adversary’s ability to cause harm by deliberately slowing down their assets travel

in subsets of the network. Thus, network interdiction is framed as a defensive action.

Network modeling in the form of defender-attacker often tries to prevent an attack

90

or degradation of a system or at least minimize a metric of loss. For example, in

research by Lei et al. (2018), an attacker tries to destroy a subset of arcs on a network

that will minimize the system’s source-to-sink flow by randomly interdicting an arc

with a measure of uncertainty. The study investigates the defender’s choice to increase

arc capacity to mitigate loss after the attacker’s plan has been decided. Risk-averse

and risk-neutral behaviors of the attacker and defender are investigated (Lei et al.,

2018). Perea and Puerto (2013) proposed a math programming model that optimizes

a network’s allocation of resources over an existing railway system to minimize the

negative consequences of an attack. Not all defensive models focus on a physical

attack nor degradation of the system. For example, Zokaee et al. (2016) considered a

humanitarian logistics network for disaster relief operations by modeling the shortages

of relief commodities flowing through the system. The model investigates a three-level

chain model of suppliers, distribution centers, and affected areas considered, seeking

to maximize the satisfaction level of the affected population.

As intimated previously, some literature frames preliminary actions on a network

followed by operations thereon as an attacker-defender framework. Insight into such

attacker-defender models, and even the trilevel variant of attacker-defender-attacker

models, reveals an advantage to the attacker every time. The defender is tasked

with protecting an extensive network with limited assets to minimize disruption. In

contrast, the attacker need only attack a subsection of the network (Brown et al.,

2006). Verter and Dasci (2002) modeled the simultaneous optimization of plant lo-

cations with capacities on acquisition and technology selection decisions in a multi-

commodity environment. Jouzdani et al. (2013) combined asset location and network

flow considerations by minimizing the cost of facility locations, traffic congestion, and

transportation of milk and dairy products under uncertain conditions. The authors’

model utilized periods of demand uncertainty in a planning horizon to determine

91

optimal facility location and production volumes (Jouzdani et al., 2013).

Solution Methods Bilevel programming problems are challenging to solve;

even simple linear bilevel programs are NP-hard (Jeroslow, 1985). Under certain

circumstances, a bilevel program can be reformulated as a single-level math program

and solved directly. Such cases occur when the lower-level problem is a convex opti-

mization problem; reformulation of zero-sum games occurs by taking the dual of the

lower-level problem (Wood, 1993), and of non-zero-sum games by replacing the lower-

level problem with its Karush-Kuhn-Tucker necessary optimality conditions (Colson

et al., 2007). These methods are likewise suitable for lower-level problems having

integer-restricted variables, if certain conditions apply to the integer-relaxed variant

(e.g., total unimodularity of a linear constraint matrix).

In the absence of such properties, bilevel programs with integer-restricted lower-

level decision variables are more difficult to solve. If the upper-level decision-variables

are integer- or binary-restricted, some optimal approaches exist. (Bard and Moore,

1992) converted a two-level problem into a single-level problem, iteratively solving

it via a branch-and-bound technique. Branch and bound performance has improved

by applying plane cutting techniques (DeNegre and Ralphs, 2009). Complementary

pivoting has also proven effective in finding global optimal solutions (Bialas and

Karwan, 1984).

If the upper-level decision variables are not integer-restricted (Robbins and Lun-

day, 2016) or if they are but the problem is more challenging (e.g., nonlinear or large

problem instances), a popular approach is to apply heuristics or metaheuristics to

solve the upper-level problem while seeking the corresponding best solution(s) in the

lower-level. These methods often include using trust-region methods (Conn et al.,

2000) and penalty function methods (Ishizuka and Aiyoshi, 1992). Other techniques

include simulated annealing (Sahin and Ciric, 1998), genetic algorithms (Yin, 2000;

92

Calvete et al., 2008), and particle swarm optimization (Wang et al., 2007), as well as

hybrid approaches that combine these techniques (Kuo et al., 2015).

Section 4.1 sets forth the bilevel programming model to represent the motivat-

ing problem. Thereafter, it discusses the model’s properties within the context of

the aforementioned solution methods, informing two alternative approaches to solve

problem instances.

4.0.2 Statement of Contributions

This paper makes two contributions to the network interdiction literature. First,

it develops and validates a bilevel mixed-integer program for the problem of interest.

A (lower-level) decision-maker routes assets of different types to sequentially visit

demand nodes within limited duration time windows while minimizing the cumula-

tive service times. In direct opposition, an (upper-level) decision-maker disrupts the

network with actions to increase travel time on subsets of arcs, maximizing the min-

imum cumulative service times. Second, it proposes greedy and simulated annealing

founded metaheuristic methodologies to find and improve feasible solutions to the

Stackelberg model consistently.

Within the remainder of this paper, Section 4.1 presents the model and accompa-

nying solution methodology. Section 4.2 illustrates the results of applying the solution

method to a small, representative instance, scopes the computational experiments to

test the relative efficacy and efficiency of alternative solution methods, reports the

testing results, and discusses resulting insights. Thereafter, Section 4.3 concludes the

research and suggests meaningful extensions.

93

4.1 Model Formulation and Solution Methodology

This section sets forth the model formulations in Section 4.1.1 and corresponding

solution methodologies in Section 4.1.2 that will be evaluated in Section 4.2.

4.1.1 Model Formulation

Several assumptions are necessary to frame the model. First, the defender-attacker

model is assumed to entail sequential decisions, wherein the defender interdicts the

network and the attacker subsequently routes assets of different types to service de-

mands in a coordinated manner. Second, the attacker is aware of the defender’s

interdiction strategy prior to routing assets. These two assumptions correspond to

an extensive form game theoretic framework (i.e., a Stackelberg game) with perfect

information, and the latter allows us to consider the attacker’s best response to a

given defender’s strategy. Third, the defender has complete information about the

attacker’s asset routing and servicing problem. Such an assumption is appropriate as

the defender has an excellent intelligence gathering enterprise. (For the alternative

modeling perspective supporting civil applications, this assumption is also appropri-

ate when seeking to identify the most effective disruptions, i.e., the greatest network

vulnerabilities.) This assumption is relevant because it allows the defender to con-

sider the attacker’s best response to a given strategy and, in doing so, seek to identify

the best interdiction strategy. Of note, because the defender seeks to maximize the

cumulative service time of demands, which the attacker seeks to minimize, our bilevel

programming model represents the interaction of a zero-sum, extensive form game

theoretic framework with complete and perfect information (Shoham and Leyton-

Brown, 2008).

The following sets, parameters, and decision variables make up the bilevel pro-

gramming model studied through this paper. The model consists of multiple asset

94

types routed on a directed network to supply nodes from predetermined demand

nodes. Different asset types are required to satisfy demand in a prearranged sequen-

tial order, and asset types are capable of traveling arcs at different speeds.

Sets

• N = {1, ..., n}: set of nodes in the transportation network or, alternatively,

the set of nodes in a network induced by a regular tessellation to approximate

continuous space, indexed alternatively on either i or j

– ND ⊂ N : subset of nodes corresponding to demand nodes

• A: set of directed arcs that connect nodes in a transportation network or, as

examined for instances in Section 4.2 of this paper, in a regular tessellation that

discretizes continuous space, indexed by (i, j)

• G(N,A): the directed network

• L = {1, ..., l}: set of possible locations for a defender to conduct disruptive

actions, each of which will slow down attacker travel on nearby arcs in the

distribution network

• Ψ = {1, ..., |Ψ|}: asset types utilized to service demands, indexed on ψ, where

ψ indicates the respective sequence in which at least one asset of the different

asset types must individually visit a demand to collectively service it

• K: the set of assets, indexed on k and partitioned on Ψ, whereKψ ⊂ K ∀ ψ ∈ Ψ,⋃
ψ∈Ψ

Kψ = K, and
⋂
ψ∈Ψ

Kψ = ∅

Parameters

95

• σ: a positive parameter indicating the additional amount of time an attacker’s

asset requires to traverse an arc due to each disruption ` ∈ L that affects the arc.

Assumed via this parameter is that the cumulative effect of multiple disruptive

actions is additive.

• η: the maximum number of delaying actions imposed by the defender that may

be implemented against all locations ` ∈ L

• αij`: binary parameter equal to 1 if a delaying action at location ` will slow

down defender travel on arc (i, j), and 0 otherwise. This research assumes arcs,

where both nodes are within a bounded Euclidean distance of ` ∈ L are affected.

• bik: binary parameter equal to 1 if asset k is initially located at node i, and 0

otherwise.

• sk = argmax
i∈N

{bik}: the node at which asset k is initially located

• τ̃ijk: positive parameter indicating the length of time required to transverse arc

(i, j) for asset k in the absence of interdiction

• ω: a scalar representing how much slower an agent may traverse an arc. For

example, if ω = 2, an agent may take twice as long as their fastest time to

traverse an arc, i.e., their slowest speed is 1/ω times their fastest speed.

• δ: parameter indicating the maximum range of time between when an asset of

type ψ = 1 visits a demand until asset type ψ = |Ψ| must visit the demand to

collectively service it

Decision Variables

• y`: a non-negative integer-valued defender decision variable equal to the number

of disruptive actions at location `. Assumed via the integer-nature of this deci-

96

sion variable is that multiple disruptive actions may occur at the same location,

and their cumulative effects on nearby arcs are additive.

• τijk: positive decision variable indicating the length of time required to trans-

verse arc (i, j) for asset k in the presence of interdiction

• xijk: binary decision variable equal to 1 if asset k traverses arc (i, j), and 0

otherwise

• uik: non-negative decision variable specific to each node i and asset k, used

within the formulation to implement a lifted variant (Desrochers and Laporte,

1991) of Miller-Tucker-Zemlin (MTZ) subtour elimination constraints (Miller

et al., 1960)

• tik: non-negative decision variable indicating the time at which asset k arrives

at node i

• πiψ: non-negative decision variable indicating the time at which an asset of type

ψ ∈ Ψ visits demand i ∈ ND

• γik: binary decision variable equal to 1 if asset k ∈ Kψ visits demand i ∈ ND

for all asset types ψ ∈ Ψ, and 0 otherwise

Given this notation, we formulate the bilevel problem P corresponding to this

Stackelberg game as follows:

P: max
y

min
x

∑
i∈ND

πi|Ψ| (35)

s.t. τijk = τ̃ijk + σ
∑
`∈L

αij`y`, ∀ (i, j) ∈ A, k ∈ K, (36)

∑
`∈L

y` = η, (37)

97

y` ∈ Z+, ∀ ` ∈ L, (38)∑
j:(i,j)∈A

xijk −
∑

j:(j,i)∈A

xjik ≤ bik, ∀ i ∈ N, k ∈ K, (39)

uik − ujk + (|N | − 1)xijk + (|N | − 3)xjik ≤ |N | − 2, ...

... ∀ (i, j) ∈ A|j 6= sk, k ∈ K, (40)∑
j:(i,j)∈A

∑
k∈Kψ

xijk ≥ 1, ∀ i ∈ ND, ψ ∈ Ψ, (41)

tik + τijk ≤ tjk +M(1− xijk), ∀ (i, j) ∈ A, k ∈ K, (42)

tjk ≤ tik + ωτijk +M(1− xijk), ∀ (i, j) ∈ A, k ∈ K, (43)

tik ≤M
∑

j:(j,i)∈A

xjik, ∀i ∈ N, k ∈ K, (44)

πiψ ≥ tik, ∀ i ∈ ND, ψ ∈ Ψ, k ∈ Kψ, (45)

πiψ ≤ tik +M(1− γik), ∀ i ∈ ND, ψ ∈ Ψ, k ∈ Kψ, (46)∑
k∈Kψ

γik = 1, ∀ i ∈ ND, ψ ∈ Ψ, (47)

πi(ψ−1) ≤ πiψ, ∀ i ∈ ND, ψ ∈ Ψ \ {1}, (48)

πi|Ψ| − πi1 ≤ δ, ∀ i ∈ ND, (49)

xijk ∈ {0, 1}, ∀ (i, j) ∈ A, k ∈ K, (50)

uik ≥ 0, ∀ i ∈ N, k ∈ K, (51)

tik ≥ 0, ∀ i ∈ N, k ∈ K, (52)

πiψ ≥ 0, ∀ i ∈ ND, ψ ∈ Ψ, (53)

γik ∈ {0, 1}, ∀ i ∈ ND, ψ ∈ Ψ, k ∈ Kψ. (54)

As indicated within the objective function (35), the defender and attacker re-

spectively seek to maximize and minimize the cumulative time to collectively service

98

the demands. Constraint (36) computes the arc travel times τijk as affected by the

defender’s interdiction strategy. The adopted representation is additive and linear.

Alternative representations are possible, e.g., wherein disruptive actions impose a

percentage increase to travel times, and may be embraced as appropriate for the ap-

plied problem of interest. Constraint (37) bounds the number of disruptive actions

to be equal to η, and Constraint (38) limits the y`-variables to be non-negative and

integer-valued, allowing more than one disruption at a given location.

For the attacker’s routing problem, Constraint (39) enforces the conservation of

flow for the movement of assets without requiring their return to respective origins.

Constraint (40) applies a lifted variant of the MTZ subtour elimination constraints.

Constraint (41) requires at least one asset k of each type ψ ∈ Ψ visit each demand

node i ∈ ND.

Constraints (42) and (43) calculate the time at which each asset visits nodes as it

moves through the network. Within Constraint (43), the term ωτijk allows assets to

slow down to 1/ω of their fastest speed for traversing arc (i, j) to coordinate sequential

arrival times at demands. When applied to instances, one may parameterize M to

be equal to the longest time required to visit every demand node. Alternatively, it

suffices to set M = max
k∈K

 ∑
(i,j)∈A

2τijk

. Constraint (44) requires tik = 0 if asset k

never visits node i.

Constraint (45) bounds πiψ-values below by the latest asset of type k ∈ Kψ to

arrive at node i ∈ ND. For each asset type, Constraints (46) and (47) collectively

impose an upper bound on ψiψ to affix the visit to a node by the latest asset of type

k ∈ Kψ. Constraint (48) ensures the visits by asset types do not violate an ordinal

sequence, with simultaneous visits allowed. For each demand node, Constraint (49)

requires the sequence of visits by asset types to occur within a range of δ units of

time.

99

Finally, constraints (50)-(54) enforce the respective, appropriate restrictions on

the decision variables.

As an aside, we note that Problem P has a convenient, alternative use. As for-

mulated, it considers a defender seeking to delay an attacker via route-delaying in-

terdictions at locations ` ∈ L. Alternatively, consider those locations to be where

an attacker may impose additional security measures to protect travel over nearby

arcs (i, j), which would allow faster travel due to the enhanced security. For such a

case, σ < 0; the attacker controls the y`-variables; the objective is a strict minimiza-

tion problem, and the mixed-integer linear program may be solved directly with a

commercial solver. Beyond the scope of this research, one may also modify Problem

P as a competitive location and routing model, wherein a defender imposes a set of

delaying actions, and an attacker both imposes a set of security measures and routes

the assets.

4.1.2 Solution Methodology

It is of merit to analyze the formulation of Problem P to identify an appropriate

solution methodology. Bilevel programming problems are NP-hard (Jeroslow, 1985).

As a (notably) more complicated variant of a VRP formulation, the lower-level prob-

lem embedded within Problem P is also NP-hard (Toth and Vigo, 2002). Thus, the

overall complexity of Problem P is σp2-hard (Arora and Barak, 2009).

The NP-hard nature of bilevel programs does not preclude the existence of trans-

formations to yield more readily solvable, equivalent formulations. For a bilevel

program with different upper-level and lower-level objective functions, replacing the

lower-level problem with its Karush-Kuhn-Tucker optimality conditions (Colson et al.,

2007) yields a single-level, nonlinear program that can be solved directly via a com-

mercial solver, subject to certain convexity-related constraint qualifications on the

100

lower-level problem in Problem P. For a bilevel program like Problem P wherein

there is a single objective function in tension (i.e., a zero-sum Stackelberg game), one

may take the dual of the lower-level (a.k.a., inner) problem (Wood, 1993; Lunday and

Sherali, 2012a; Lessin et al., 2018) to attain a single-level nonlinear program, again

subject to certain convexity conditions on the lower-level problem.

Although the lower-level formulation in Problem P has binary-valued xijk-variables,

the latter of the aforementioned techniques is viable if an integer-valued solution is

optimal when these (binary) integer restrictions are relaxed, i.e., if the lower-level

formulation’s system of constraints exhibits total unimodularity (Nemhauser and

Wolsey, 1993). Unfortunately, this requirement does not hold, due to Constraints

(42) and (43). These VRP-style constraints encourage decimal-valued solutions in x

by splitting flows to attain artificially lower node arrival times t and, in turn, artifi-

cially lower demand service times π in the objective function. Thus, we must solve

the bilevel program rather than a relaxation-induced, single-level transformation.

For a given defender solution y, one may solve the (NP-hard) lower-level problem

directly via a commercial solver. As such, one may solve Problem P by searching the

upper-level feasible region and, for each solution y, identify a corresponding, optimal

solution to the lower-level problem, i.e., a best-response by the defender. Such a

search procedure is akin to searching the first stage in a two-stage, extensive form

game tree, where an optimal solution to Problem P corresponds to a subperfect Nash

equilibrium.

An exhaustive enumeration of the upper-level feasible region is unwise. For η

disrutive actions and |L| possible locations as which they can occur, a defender has(
η+|L|−1
|L|−1

)
feasible solutions. Given the integer-restricted nature of the decision vari-

ables y, it is possible to search the upper-level feasible region via a branch-and-bound

approach (Bard and Falk, 1982), but the exhaustive nature of such a method por-

101

tends computational tractability issues, given the NP-hard nature of the lower-level

problem. Thus, it is of interest to rapidly identify high-quality solutions to the upper-

level problem via an effective construction heuristic and seek to improve upon them

via an efficient metaheuristic. The remainder of this section proposes a conceptually-

motivated construction heuristic, to be applied in isolation or in combination with

other metaheuristics, which Section 4.2 will evaluate via computational testing.

We propose three solution methods to search the upper-level feasible region to

identify high quality solutions with relative computational efficiency. As Table 8 in-

dicates, these methods respectively consist of a greedy construction heuristic (GCH);

GCH followed by simulated annealing (SA); and GCH followed by an enhanced vari-

ant of simulated annealing (eSA).

Table 8. Solution Methods Examined

Construction Improvement
Name Heuristic Metaheuristic
GCH Greedy –
SA Greedy Simulated Annealing (SA)
eSA Greedy Enhanced SA

Whereas the first solution method entails only the identification of a feasible so-

lution using GCH, the second solution method subsequently applies a simulated an-

nealing metaheuristic (Kirkpatrick et al., 1983). We selected simulated annealing

as a baseline metaheuristic because GCH provides a single solution upon which to

improve. In contrast, population-based metaheuristics (e.g., genetic algorithms (Hol-

land, 1973), particle swarm optimization (Kennedy and Eberhart, 1995), ant colony

optimization (Dorigo and Di Caro, 1999)) require more initial candidate solutions,

and their generation would require the embrace of deliberately worse construction

heuristics or random interdiction strategies, neither of which has conceptual appeal.

Other single-solution metaheuristics are certainly available (e.g., Tabu search (Glover,

1986), GRASP (Marques-Silva and Sakallah, 1999)), and a consideration of their

102

mechanisms informs the third solution method. Subsequent discussion details the

components of each solution method and their implementation.

Greedy Construction Heuristic (GCH)

GCH identifies a conceptually effective, feasible solution to Problem P. Whereas

greedy heuristics entail no assurance of identifying an optimal solution, a logical series

of choices when constructing a feasible solution will often yield a good solution. Given

η disruptive actions allowed, GCH identifies a solution by iteratively identifying each

subsequent disruptive action location ` ∈ L by solving the lower-level problem (η+1)

times.

Define Problem P1 as the lower-level problem within Problem P, which seeks

to minimize the objective function subject to constraints (39)-(54), given a feasible

interdiction strategy ȳ. Solving P1 identifies an optimal asset routing solution.

Define Problem P2 as Problem P with the goal of only maximizing the objective

function, given both a fixed, partial attacker routing solution x̄ and a fixed, partial

defender solution ȳ where
∑

`∈L ȳ` = (η − 1), and with the additional constraint

y` ≥ ȳ`, ∀` ∈ L. Solving Problem P2 identifies the best location for the ηth disruptive

action, given (η − 1) such actions have been identified and are fixed.

Leveraging these definitions, Algorithm 5 presents GCH. Line 1 initializes the total

number of disruptive actions η∗ and a null interdiction solution ȳ. Line 2 identifies

an optimal routing solution x̄ in the absence of interdiction and updates the current

routing solution. Within Lines 3-7, GCH iteratively identifies the location of the

disruptive actions. For each such action, Line 4 increments the number of actions

η by 1; Line 5 identifies the location of the additional action within the updated

interdiction strategy ȳ; and Line 6 identifies the best asset-routing response x̄. Upon

termination, Line 8 returns the interdiction strategy ȳ, feasible to Problem P with

103

objective function value z∗.

Algorithm 5 Greedy Construction Heuristic

1: Set η∗ = η and ȳ = 0
2: Solve Problem P1 for ȳ to identify x∗ and z∗, and let x̄← x∗

3: for counter = 1 to η∗ do
4: Set η ← counter
5: Solve Problem P2 for x̄ to identify y∗ and let ȳ ← y∗

6: Solve Problem P1 for ȳ to identify x∗ and z∗, and let x̄← x̄∗

7: end for
8: return ȳ, x∗, and z∗

Simulated Annealing Metaheuristic

Originally developed by (Kirkpatrick et al., 1983), simulated annealing is a useful

improvement metaheuristic for vehicle routing problems (e.g., Osman, 1993; Van Breedam,

1995; Chiang and Russell, 1996; Vincent et al., 2017). Other interdiction models have

explored the use of simulated annealing to achieve near optimal solutions for large

scale models (e.g., Janjarassuk and Nakrachata-Amon, 2015; Parsafard and Li, 2021).

Whereas a hill-climbing algorithm or descent method seeks only improving solu-

tions, the simulated annealing metaheuristic allows a move within a feasible region

from a current solution to a solution with a worse objective function value. The goal of

this allowance is to avoid becoming trapped in a local optimum that would otherwise

preclude a broader search of the feasible region, thereby improving the likelihood of

identifying a global optimum. Such a wariness of converging to a local-but-not-global

optimum is warranted for nonconvex optimization problems, including mixed-integer

linear programming problems like Problem P.

Each iteration of a conventional implementation of SA functions as follows. Given

a feasible solution and a defined neighborhood of solutions, identify and evaluate a

candidate solution in the neighborhood. If the candidate solution is feasible and has

an improved objective function value, accept it as the new solution with certainty;

104

otherwise, accept it as the new solution with some probability p. As SA proceeds, the

metaheuristic deliberately reduces p, typically fast initially and then slower. Much like

the malleability of a metal that is cooled via an annealing process, the willingness of

SA to adopt a worse candidate solution reduces over time (i.e., iterations), eventually

hardening (i.e., converging) to the behavior of a hill-climbing algorithm or descent

method. SA typically terminates after a fixed, user-defined number of iterations or

when a temperature parameter T used to calculate p decreases below a predetermined

value T ∗ (Bard, 2013). Affecting its performance notably, an SA implementation

has two important characteristics: (i) its definition of a neighborhood and (ii) a

probability function with associated parameters to define the probability p.

SA Neighborhood Definition Given a feasible interdiction strategy ȳ for

Problem P, we define the neighborhood to be

Y(ȳ) ≡

{
y :
∑
`∈L

y` = η; y` ∈ Z+,∀ ` ∈ L;
∑
`∈L

|ȳ` − y`| = 2

}

In practice, one can identify a candidate solution y′ ∈ Y(ȳ) by selecting a single

location ˜̀ in the current solution having y˜̀≥ 1 and moving a disruptive action from

that location to any other location `′ ∈ L\{˜̀}. Our implementation of SA identifies a

candidate solution y′ in this manner, selecting the location ˜̀ from a discrete uniform

distribution over all disruptive action locations and the new location for a disruptive

action via a discrete uniform distribution over ` ∈ L \ {˜̀}.

Solving P1 for the candidate solution y′ yields an optimal objective function value

z′. Denoting the current solution’s optimal objective function value for P1 is z̄, the

relative (%) objective function value increase is ∆ = (z′ − z̄)/z̄.

105

SA Probability Function The probability function defined in Equation

(55) computes the likelihood p with which SA accepts a candidate solution y′ within

a given iteration, as a function of both ∆ and a declining temperature parameter, T .

As indicated by the conditions on ∆, our SA implementation accepts any candidate

solution that is not worse than the current solution with certainty, and it accepts

a worse solution with probability p, declining exponentially on (∆/T) for negative

values of ∆.

p =


1 ∆ ≥ 0

e(∆/T) ∆ < 0

(55)

Of note, T is not a fixed parameter; initialized with a temperature T = T0, it de-

creases with each iteration to affect the annealing process for any fixed ∆ < 0. Many

functional forms (e.g., linear, geometric) are available to update the temperature T .

Based upon initial computational testing for instances of Problem P, we adopted the

temperature update function given by Equation (56) for a user-determined parameter

β > 0.

T ← T

1 + βT
(56)

Defining the temperature threshold and maximum iteration count used for alternative

SA termination criteria as T ∗ and itermax, respectively, Algorithm 6 presents our

implementation of the SA metaheuristic to solve an instance of Problem P, returning

a best identified interdiction strategy y∗, the corresponding best routing response x∗,

and the resulting objective function value z∗.

Within Algorithm 6, Line 1 recognizes the initial feasible solution, initial temper-

ature parameter, and the two alternative termination criteria. Line 2 identifies the

best routing response for the interdiction strategy and the corresponding objective

function value. Given an initial solution identified via GCH, Line 2 is not necessary,

but we retain it to represent SA for alternative means to identify an initial feasible

106

Algorithm 6 SA Implementation

1: Given ȳ feasible to Problem P1, T0, T ∗, and itermax
2: Solve P1 for ȳ to identify x̄ and z̄
3: Let y∗ ← ȳ, x∗ ← x̄, z∗ ← z̄, and T ← T0

4: for iter = 1 to itermax do
5: Update T via Equation (56)
6: Identify a candidate solution y′ ∈ Y(ȳ)
7: Solve P1 for y′ to identify x′ and z′, and compute ∆
8: With probability p via Equation (55), let ȳ ← y′, x̄← x′, and z̄ ← z′

9: if z̄ > z∗ then
10: Let y∗ ← ȳ, x∗ ← x̄, z∗ ← z̄
11: end if
12: if T < T ∗ then
13: break
14: end if
15: end for
16: return y∗, x∗, and z∗

solution (e.g., a randomly generated interdiction strategy). Line 3 initializes the in-

cumbent solutions and cooling temperature. Within Lines 4-15, SA identifies and

evaluates at most itermax candidate solutions. Line 5 updates the cooling tempera-

ture. Line 6 identifies a candidate solution, and Line 7 evaluates it. Line 8 determines

whether to accept the candidate solution as the current solution, and Lines 9-11 up-

date the incumbent solution if appropriate. An iteration concludes by comparing if T

is lower than the threshold T ∗, and, if so, Lines 12-14 terminate the for loop. Other-

wise, iterations continue until iter = itermax, after which the procedure concludes in

Line 16 with the best identified interdiction strategy, routing response, and objective

function value.

Enhanced Simulated Annealing Metaheuristic

Within Algorithm 6, Line 6 incurs a notable computational expense. As previ-

ously discussed, Problem P1 is NP-hard. The Enhanced Simulated Annealing (eSA)

metaheuristic seeks to reduce the number of times it solves Problem P1 without a

107

productive exploration of the upper-level feasible region. More specifically, SA ex-

hibits two inefficiencies, as implemented in Algorithm 6. First, a candidate solution

y′ may have been previously explored. Second, the generation of a candidate solution

y′ from a current solution ȳ may remove an effective disruptive action while adding

an ineffective action elsewhere. The eSA metaheuristic addresses these computational

inefficiencies via two mechanisms: (i) a tabu list and (ii) an alternative method to

generate candidate solutions.

Borrowing from the Tabu Search metaheuristic (Glover, 1986), eSA maintains a

bounded tabu list of the most recently examined interdiction solutions. If a candidate

solution y′ is on the list, eSA identifies an alternative candidate solution to evaluate.

Other interdiction research (e.g., Michalopoulos et al., 2015; Aksen and Aras, 2013)

has directly applied Tabu Search, so there is precedent for a tabu list for reducing

computational effort when solving a bilevel program.

With regard to generating a candidate solution in Line 6 of Algorithm 6, eSA

discards the randomized mechanisms for moving a disruptive action to a new location,

as discussed in Section 4.1.2. It instead embraces a conceptually greedy approach,

seeking to move a (perceived) least effective disruptive action to a location where it

would be most effective. Given a solution ȳ, only ˜̀ and `′ are necessary to define the

candidate solution y′. Algorithm 7 defines the eSA process to identify (˜̀, `′) and, in

turn, y′.

Within Algorithm 7, we seek to identify the pair of locations (˜̀, `′) that preemp-

tively and respectively remove a disruptive action from the location affecting arcs

least (currently) travelled by assets and move it to a location that will affect arcs

most (currently) travelled by assets, such that the resulting solution y′ is not on the

tabu list. Line 1 recognizes the given information, and Lines 2 and 3 define the sorted

lists R1 and R2˜̀. If there is a tie when sorting any list, the respective ordering of

108

Algorithm 7 eSA Identification of y′

1: Given a tabu list T , an interdiction strategy ȳ, and x∗ as the corresponding
solution to Problem P1

2: Define R1 as a list of current disruptive action locations ˜̀, sorted in ascending
order on

∑
(i,j)∈A

∑
k∈K αij ˜̀x∗ijk

3: Define R2˜̀ as a list of potential disruptive action locations `′ ∈ L \ {˜̀}, sorted in
descending order on strictly positive values of

∑
(i,j)∈A

∑
k∈K αij`′x

∗
ijk

4: for ˜̀∈ R1 do
5: for `′ ∈ R2˜̀ do
6: if y′ /∈ T then
7: return y′

8: end if
9: end for

10: end for

indices having the same score is random. Lines 4-10 identify y′, wherein Lines 4 and

5 assume the iteration of elements in each list in the respective sorted orders. If Algo-

rithm 7 terminates without identifying a y′ /∈ T , the eSA metaheuristic terminates.

Algorithm 7’s identification of (˜̀, `′) merits further discussion. Selecting ˜̀ via R1

is an imperfect greedy approach. From an ideal perspective, it will move an ineffective

disruptive action in the current interdiction solution. Alternatively, it may move a

disruptive action that was so effective that the lower-level decision-maker avoided

having agents traverse any nearby arcs. The possibility that ˜̀ is poorly selected may

provide an equivalent or better asset routing when a disruptive action is moved to

`′, resulting in ∆ < 0. As such, the sound conceptual motivation for Algorithm 7

implemented with eSA does not improve upon SA with certainty. Computational

testing is necessary to assess their relative performances, as Section 4.2 examines.

4.2 Testing, Results, and Analysis

For a network G(N,A), we consider a regular hexagonal tessellation of a planar

region, a discretization technique embraced in the literature for routing assets in a

109

region not restricted to a road network, such as airspace (e.g., Yousefi and Donohue,

2004; Lunday et al., 2012; Lessin et al., 2018). Additionally, a hexagonal grid provides

benefit of well defined areas for disruptive actions, i.e., ` ∈ L as center of a hexagon,

wherein a disruptive action (i.e., where y` ≥ 1) slows travel across all arcs bordering

the hexagon.

4.2.1 Illustrative Example

For the illustrative example, Figure 18 presents the hexagonal mesh with 16 reg-

ular hexagons (i.e., |L| = 16). Depicted on the network are K = {1, 2} assets and

Ψ = {1, 2} asset types, with K1 = {1} and K2 = {2} having respective origins indi-

cated by the blue circle at Node 31 and purple diamond at Node 3. Red stars indicate

the set of demand points ND = {12, 26, 34}. Asset Types 1 and 2 have different min-

imum travel times of (τij1, τij2) = (1, 0.8), ∀ (i, j) ∈ A, and the maximum range of

time between when assets of Type 1 and 2 must respectively service a demand is

δ = 5.

Figure 18. Illustrative Example: Hexagonal Mesh, Initial Asset Locations, and Demand
Node Locations

Figure 19a illustrates an optimal routing of the assets to service demands in the

absence of delaying actions implemented by the defender (i.e., η = 0), corresponding

to an objective function value of 25.6. Figure 19b presents the delaying actions

110

found via GCH with η = 5, and the corresponding optimal asset routing solution for

the lower-level problem. The delaying actions increase travel time on the affected

arcs by σ = 1.5 time units. Figure 19b depicts numerals (e.g., 1) in the center of

hexagons where y` = 1, indicating the number of delaying actions at the center of

selected hexagons, in turn increasing travel times on the bordering the arcs. With

the η = 5 disruptions depicted, the optimal asset routing solution has a minimal

objective function value of 55.

(a) Routing Solution No
Delays

(b) Optimal Routing η = 5

Figure 19. Example Model Execution

Accompanying the visual depictions in Figures 19a and 19b, Tables 9 and 10 report

the πi-values resulting from the arrival times of asset types ψ = 1 (i.e., asset k = 1)

and ψ = 2 (i.e., asset k = 2) at each of the demand nodes. Examining the rightmost

columns, the GCH-identified delaying actions increase the cumulative service time by

29.4, resulting from delaying the servicing of Nodes 12, 26, and 34 respectively by 2.3,

7.7, and 24.4 time units. Also compelling, the disruptive actions change the optimal

routes of the assets, reverse the order in which the demands are serviced, and compel

simultaneous servicing of demands by both assets.

As an aside, there do exist alternative optima for the asset routing. The two paths

traversing from Node 26 to Node 35 (i.e., 26 − 25 − 24 − 35 and 26 − 37 − 36 − 35)

in Figure 19b are equivalent. Such a characteristic is more likely to exist in optimal

111

Table 9. Demand Service Times with
No Delays

Demand Asset Type
Node ψ = 1 ψ = 2

12 10.0 11.2
26 7.0 8.8
34 3.0 5.6

Table 10. Demand Service Times with
GCH-identified η = 5 Disruptive Ac-
tions

Demand Asset Type
Node ψ = 1 ψ = 2

12 13.5 13.5
26 16.5 16.5
34 25.0 25.0

asset routing solutions for instances having common arc traversal times and a graph

induced via a regular tessellation of a region, which collectively contribute to problem

symmetry. Given this observation, specialized techniques such as orbital branching

(Ostrowski et al., 2011) may reduce the required computational effort to solve the

lower-level problem, although the exploration of such techniques is beyond the scope

of this study.

4.2.2 Parameter Exploration

To evaluate the potential of both SA and eSA to improve upon GCH-identified

solution, testing considered alternative numbers of delaying strategies (η), initial tem-

perature values (T0), and the cooling rate parameter (β) used in the temperature up-

date function, as discussed in Section 4.1.2. Table 11 displays the parameters values

explored herein.

Table 11. Values to Explore

Factor Values Explored
Number Delaying Actions η 3, 4, 5, 6
Initial Temperature T0 1, 5
Cooling Rate Parameter β 0.01, 0.1

For the baseline instance depicted in Figure 19a, testing examined both SA and

eSA with combination of the parameters in Table 11, initializing them with a GCH-

identified solution having the same η-value and using a common random seed. The

effect of high and low values of both T0 and β explored the respective impacts of the

112

temperature update function and the probability of accepting a candidate solution

that will not yield an immediate improvement. Both SA and eSA terminated after 45

iterations or when the annealing temperature dropped below 0.05, whichever came

first. All testing was performed on an Intel(R) Core(TM) i7-10875H CPU @2.30GHz

with 128 GB of RAM on a 64-bit operating system, and using Python (Version 3.9.7)

with the GurobyPi package to invoke the commercial solver Gurobi (Version 9.5.1).

When solving the lower-level problems using Gurobi, alternative termination criteria

were 1800 seconds (i.e., 30 minutes) of computational effort and an identified 0.0005%

relative optimality gap.

Figure 20 depicts four temperature update functions over the respective (T0, β)-

combinations over 45 iterations. It depicts faster initial decreases in temperature for

larger values of β or T0. Of note, the combination of (T0, β) = (5, 0.01) never exhibits

a temperature below 1, even after 45 iterations.

Figure 20. Annealing Temperature as a
function of T0 and β

Table 12. Probability of Accepting
Worse Candidate Solution (%) via
Equation 55

∆
-0.05 -0.1 -0.2 -0.4

4 99.8 97.5 95.1 90.5
2 97.5 95.1 90.5 81.9

T 1 95.1 90.5 81.9 67.0
0.5 90.5 81.9 67.0 44.9
0.25 81.9 67.0 44.3 20.2

If a candidate solution improves the currently accepted solution, either SA or eSA

algorithm will accept it with certainty; otherwise the probability of acceptance is

determined by current temperature, T , and the change between the current solution

and candidate solution, ∆. Table 12 presents the probability (%) of accepting a worse

candidate solution over a sample of (T,∆)-value combinations. When T is greater

than 1, the probability of accepting the candidate solution is greater then 0.5, even

113

if the solution is notably worse. When T < 1, acceptance of the candidate solution

depends on a lower magnitude for ∆. This leads to an understanding that a high T0-

value paired with a low β-value will more likely accept worsening candidate solutions,

regardless of how much worse they are. Conversely, a low T0 paired with a high β-

value are less likely to accept a worse candidate solution, even if the magnitude of its

∆-value is small.

4.2.3 Comparative Testing of Solution Methods

Table 13 reports the objective function value attained via GCH for each of the

η-values explored. Because the GCH algorithm iteratively adds a delaying strategy

to the solution, the objective function value strictly increases with η and does so

at a reasonably steady rate. The remainder of this section explores the relative

performances of SA and eSA. The GCH-identified y`-values initialize both the SA

and eSA algorithms.

Table 13. Objective Function Values for Solutions Identified via the Greedy Construc-
tion Heuristic

η Objective
3 42.7
4 47.0
5 55.0
6 62.2

Table 14 presents the best objective function value found after 45 iterations of

SA and eSA for each combination η, T0, and β from Table 11. SA identified an

improved solution over GCH for 12 of the 16 instances. It failed to do so only when

T0 = 1, three times of which occurred with β = 0.01, indicating the relatively poor

performance of that parametric combination for SA. This outcome is likely due to

the lower probability of accepting a worse candidate solution (i.e., getting stuck in

a local-but-not-global optimal solution). In contrast, eSA improved upon the GCH

114

solution at each η-value and for every combination of (T0, β)-parameters.

Table 14. Best Objective Function Value after 45 Iterations for the SA and eSA Algo-
rithms

η = 3 η = 4 η = 5 η = 6
T0 β SA eSA SA eSA SA eSA SA eSA

1
0.01 40.8 48.1 49.7 54.1 55.0 61.6 61.0 69.4
0.10 48.1 48.1 49.7 54.1 62.5 61.6 61.0 69.4

5
0.01 46.8 48.1 49.7 55.0 55.0 61.6 69.0 70.6
0.10 48.1 48.1 49.7 54.1 55.0 61.6 69.0 67.6

Whereas a higher initial temperature portends better outcomes, the effect of β

on the best identified objective function value is more nuanced. Higher β-values

performed the same or better when T0 = 1, and lower β-values more often did better

when T0 = 5, albeit not universally (i.e., SA did better with (T0, β) = (5, 0.10) than

(5, 0.01) with η = 3). Broader conclusions from the results in Table 14 are elusive,

and Section 4.2.4 reports the results of additional testing specific to the effect of

alternative β-values.

Overall, these results compel an examination of whether the annealing aspect of

the SA and eSA algorithms is effective. That is, for these instances, would SA or

eSA perform better by either never accepting a worse candidate solution (i.e., p = 0)

or always accepting it (i.e., p = 1)? Table 15 reports the objective function value of

solution respectively identified by SA and eSA for p = 0, 1 and η = 3, 4, 5, 6.

Table 15. Best Objective Function Value after 45 Iterations for the SA and eSA Al-
gorithms in the Absence of Annealing, i.e., with Fixed Probability p of Accepting a
Worse Candidate Solution

η = 3 η = 4 η = 5 η = 6
p SA eSA SA eSA SA eSA SA eSA
0 46.6 46.6 54.3 55.6 60.0 61.8 66.7 66.7
1 46.8 48.1 49.7 55.0 55.0 61.6 69.0 70.6

Within the results in Table 15, eSA performed as well or better than SA for each

instance. However, neither never (p = 0) nor always (p = 1) accepting a worse

115

candidate solution was a universally beneficial modification to either SA or eSA.

Comparing the results with Table 14, eSA with p = 0 identified the best solution for

η = 4, and eSA with p = 1 did so for η = 6. These results reinforce the merit of

exploring alternative annealing schemes and parametric combinations.

For the testing reported in Tables 14 and 15, Table 16 presents the relative per-

formance of eSA and SA regarding the objective function value and the required

algorithmic runtime. More specifically, it tabulates the percentage of instances for

which eSA performed as well as or better than SA. The first row aggregates the re-

sults over all combinations of (T0, β)-values and p-values, and over all η-values. The

second and third rows partition the results by η = 3, 4 and η = 5, 6, respectively.

Table 16. Instances (%) for which eSA performed as well or better than SA

η-values Objective Function Value Runtime
3,4,5,6 91.7 66.7

3,4 100.0 75.0
5,6 83.3 58.3

The eSA algorithm found equivalent or better solutions than SA for 91.7% of the

instances of different η-values and parametric combinations. There were two instances

where SA found a strictly better solution, at η = 5 and 6, both when β = 0.1. This

result improved to 100% when restricted to smaller η-values. The eSA had a faster

runtime for more than half of the instances, which improved to 75% when considering

only the lower η-values.

Additionally, testing examined the relative performance of eSA and SA over five

different starting seeds for pseudorandom number generation. Not reported in detail

here, testing found that eSA always found the same or better solutions than SA,

and it found them more consistently; eSA found the same best solution across all

random seeds explored, whereas SA identified a distinctly different best solution for

each random seed.

116

4.2.4 Selected Excursional Analyses

Additional testing examined the effects of the different values of β, as well as

the quality of GCH-identified solutions and instance tractability for routing multiple

assets of each type and when routing a third asset type.

Sensitivity Analysis for β-values

Testing results in the Section 4.2.3 indicated the merit of having higher T0-values

to more likely accept worse candidate solutions. Affixing T0 = 5, testing investi-

gated the effects of β-values of 0.050 and 0.075. Figure 21 shows the corresponding

temperature update functions over 45 iterations. The figure demonstrates that the

T = 1 threshold, a value where rejection of a worse candidate solution occurs more

frequently, occurs at approximately 30 and 15 iterations respectively for β = 0.050

and 0.075.

Figure 21. Annealing Temperature for T0 = 5 as a function of β

Table 17 presents the best objective function value identified by the respective

SA and eSA algorithms after 45 iterations for the β-values explored with T0 = 5. In

all instances except one (i.e., β = 0.075 and η = 6), eSA found a solution that was

equivalent to or better what SA identified.

Based on the results in Table 17 and previous testing, we recommend the use of

eSA with a higher T0-value and a lower β-value. However, even these results exhibit

117

Table 17. Best Objective Function Value after 45 Iterations for the SA and eSA Algo-
rithms with T0 = 5 and β = 0.075

η = 3 η = 4 η = 5 η = 6
T0 β SA eSA SA eSA SA eSA SA eSA

5
0.050 40.8 48.1 49.7 54.1 55.0 61.6 69.0 70.6
0.075 48.1 48.1 49.7 54.1 55.0 61.6 69.0 67.6

nuance. For lower values of η (i.e., 3 or 4), β = 0.075 was able to improve the GCH

objective-value reliably. Similarly, higher η-values of 5 or 6 performed well when

β = 0.05.

Additional Assets for each Asset Type

Additional testing explored a modified instance having K = {1, 2, 3, 4} assets and

Ψ = {1, 2} asset types, wherein K1 = {1, 2} and K2 = {3, 4}. Figure 22 depicts

the respective origins indicated by the blue circles at Nodes 31 and 41 and purple

diamonds at Nodes 3 and 9. All other aspects of the instance are unchanged from

Section 4.2.1. We also restrict our attention to only eSA vis-á-vis GCH, based upon

the relatively poorer performance of SA.

Figure 22. Modified Illustrative Example: Hexagonal Mesh, Initial Asset Locations,
and Demand Node Locations

Figures 23a and 23b respectively present the asset routing solutions for no disrup-

tive actions (η = 0) and the GCH-identified solution when η = 5. The asset routing

118

is visually different. In Figure 23a, assets of type ψ = 1 travel directly to demand

nodes, whereas assets of type ψ = 2 initially meander to allow for sequential servicing

of the demands. Moreover, the assets primarily traverse arcs in the middle of the

network. In contrast, within Figure 22 where η = 5, most of the disruptive actions

slow the travel of assets of type ψ = 2, which no longer meander, although more

assets traverse arcs on the boundary of the graph to avoid slower travel.

(a) Routing Solution No
Delays

(b) Optimal Routing η = 5

Figure 23. Example Model Execution Additional Assets

For each η-value examined, subsequent pairs of columns within Table 18 report for

GCH and eSA (after 45 iterations with (T0, β) = (5, 0.05)) the best objective function

value identified (z̄) and the required algorithmic runtime (seconds).

Table 18. Best objective function values identified via GCH and eSA after 45 iterations
with (T0, β) = (5, 0.05) for the instance depicted in Figure 22 with |K1| = |K2| = 2, for
increasing η-values

GCH eSA
η z̄ time (sec) z̄ time (sec)
3 34.2 7208.3 35.9 81075.0
4 34.2 9010.6 41.4 81081.0
5 36.5 10812.5 44.9 81076.0
6 44.2 12615.0 50.7 81061.9

GCH managed smaller improvements as η increased, with no increase between

η = 3 and 4, indicating alternative optimal routing solutions at η = 3. The best

119

objective function found after 45 iterations of eSA consistently improved upon GCH

results. The relative (%) improvement in eSA solution quality over GCH solution

quality compared to the relative (%) increase in runtime merits discussion. Compared

to GCH, eSA attained a minimum, average, and maximum increase in the objective

function value by 5.0%, 15.9%, and 23.0%.

This improvement required a six to eleven-fold increase in runtime. For challenging

problem instances, this ratio is foreseeable. The additional asset added to each asset

type complicated the solver’s ability to reach optimality for Problem P1 instances,

even with a 30-minute runtime. Given the time limits, the maximum time to apply

GCH for η disruptive actions is (1 + η)1800 seconds, plus the relatively small amount

of time to construct formulations, retrieve solutions, and manage stored information.

This equates to ∼ 7200, ∼ 9000, ∼ 10800, and ∼ 12600 seconds. Evident from

the results in Table 18, Gurobi is terminating due to time limitations for each GCH

instance of Problem P1.

Note that the eSA runtime is the runtime after it is initialized with the GCH-

identified solution. Given 45 iterations with an 1800 time limit to solve each lower-

level problem, the maximum eSA time is ∼81,000 seconds, plus the time to search

the upper-level feasible region, construct formulations, retrieve solutions, and manage

stored information. Thus, for eSA instances, Gurobi is again terminating due to time

limits. More specifically, each eSA implementation required 22.5 hours of runtime,

whereas GCH required 2, 2.5, 3, and 3.5 hours of runtime for η = 3, 4, 5, 6.

Whereas results presented in Section 4.2.3 exhibited an average relative optimality

gap < 0.01% for lower-level problem instances, these results averaged 73.9%. Of note,

such results do not indicate the solutions to the lower-level problems are necessarily

suboptimal; they demonstrate the solutions to be no worse than indicated, but they

may be better. In general, they illustrate the NP-hard nature of the lower-level

120

problem, and Gurobi must be considered as a heuristic under the runtime limitations.

In general, eSA has merit if the planning time to identify disruptive actions allows

enough time to use it. However, it is worth noting that eSA found the best improved

objective within the first 15 iterations (∼7.5 hours) for η = 3 and 6 and within the first

30 iterations (∼15 hours) for η = 4 and 5. Moreover, eSA still attained improvements

of 17.8% and 19.5% for η = 4 and 5 after 15 iterations, so a decision to embrace eSA

is not binary. We recommend its use to improve upon GCH solutions for any time

that can be afforded to identify a high qualitiy network disruption strategy.

Additional Asset Type |Ψ| = 3

An additional experiment examined a test instance to route one each of |Ψ| = 3

different types of assets. Figure 24 presents the instance, for which the only difference

from Figure 18 is an additional asset K3 = {3} starting at Node 18, depicted via a

green cross. This asset has a minimum travel time τij3 = 0.9,∀(i, j) ∈ A, a fastest

speed equal to the average of τij1 and τij2.

Figure 24. Illustrative Example: 3 Asset Types

Figures 25a and 25b respectively present the routing solutions for no disruptive

actions (η = 0) and the GCH-identified solution when η = 5. Of interest is that

both solutions present a routing solution wherein, after each asset reaches a common

node (Node 31 in Figure 25a and Node 21 for in Figure 25b), they traverse the

121

same path to the targets, sequenced in ascending order by asset type. A noteworthy

difference between the routing solutions is evident with no disruptive actions (η = 0)

in Figure 25a; the solution routes assets to service demands at Nodes 34, 26, and

12, in sequence. By comparison, the routing solution in Figure 25b (with η = 5)

routes assets to service the demands in reverse order. In the latter solution, the

disruptive actions also cause the assets to route on more arcs, including some affected

by disruptive actions.

(a) Routing Solution No
Delays

(b) Optimal Routing η = 5

Figure 25. Example Model Execution |Ψ| = 3

Table 19 reports respective objective function values and runtimes for GCH and

eSA, again after 45 iterations with (T0, β) = (5, 0.05)). Improvement remains consis-

tent over η = 3, 4, 5, with the largest increase in the objective function value occurring

when incrementing η from 5 to 6. Thus, the marginal effect of an additional disruptive

action does not follow a predictable trend.

The trade-off between eSA and GCH vis-á-vis solution quality and algorithmic

runtime merits discussion. With respect to solution quality, eSA improved upon

GCH solutions by a minimum, average, and maximum of 11.7%, 17.3%, and 20.8%,

respectively. However, the marginal improvement over GCH strictly declined with

an increase in η, indicating the challenge of finding improving solutions for instances

with greater complexity.

122

Table 19. Best objective function values identified via GCH and eSA after 45 iterations
with (T0, β) = (5, 0.05) for the instance depicted in Figure 24 with |Ψ| = 3 asset types, for
increasing η-values

GCH eSA
η z̄ time (sec) z̄ time (sec)
3 43.2 4414.1 52.2 64861.6
4 47.4 7245.3 56.7 61577.5
5 53.8 7768.9 62.7 55811.9
6 64.2 9569.7 71.7 55087.5

Interestingly, this marginal decrease with increasing η-values was accompanied by

an opposite trend in runtimes. Comparing the runtimes in Table 19 with Table 18,

it is evident that Gurobi is not always terminating due to the 1800-second time limit

on Problem P1. Although eSA required from 6 to 15 times as much time as GCH

to run for 45 iterations, the lower relative increases compared to GCH occurred for

larger η-values. Overall, the solutions to the lower-level problems for eSA applied to

all η-values were assuredly closer to optimal than those found in Section 4.2.4. The

relative optimally gap averaged 7.3% when finding best response routing solutions to

identified disruption strategies.

In general, eSA did find improvement within the first 15 iterations; for only one

third of the algorithmic runtimes reported in Table 19, eSA improved over GCH by

10.4%, 14.6%, 16.5%, and 3.3% respectively for η = 3, 4, 5, and 6. Thus, eSA retains

merit for use, even when the larger runtimes are not available to explore the upper

level feasible region more extensively.

4.3 Conclusions and Recommendations

For a subclass of vehicle routing in which multiple asset types are required to

service demands in predetermined sequential order over a contested network, this

research formulated the problem as a bilevel program, wherein the lower-level prob-

lem routes different types of asset types to satisfy demands while minimizing the

123

cumulative service times. Simultaneously, the upper-level problem seeks to identify a

strategy that imposes a bounded number of disruptive actions that slow down agent

travel on subsets of the network, seeking to maximize the cumulative service time of

demands.

This research set forth and evaluated three solution methods: a greedy construc-

tion heuristic, a simulated annealing metaheuristic, and an enhanced simulated an-

nealing that leverages a priority-based candidate solution identification and a tabu

list of previously considered solutions. Both simulated annealing-based methods im-

proved upon GCH solutions over a range of problem and algorithmic parameters,

with the latter technique doing so more consistently.

Additional testing showed that a larger number of assets of each type was com-

putationally cumbersome, whereas an increased number of asset types was less so. In

both excursions, eSA improved the initial solution GCH notably, and it did so within

the first 15 iterations (7.5 hours) of runtime.

A natural extension of this work would focus on improving the computational

effort required to solve the lower-level problem for a fixed disruption strategy. Al-

though outside the scope of this research, decomposition methods merit study. Within

Problem P1, the routing of agents is almost separable, except for the sequencing of

assets to service each demand within a bounded time window. Such a structure lends

itself to subproblems and a restricted master problem, giving promise to improved

tractability for these and larger instances, in turn reinforcing the general solution

procedure for the bilevel program.

124

V. Conclusions and Future Recommendations

Adversarial strategy and technology might have advanced to match and surpass

the United States military in some areas. To continue to be competitive and support

its allies, the United States military strategy has required rethinking previous methods

of warfare and repurposing existing equipment and vehicles in new ways. Where

Mosaic Warfare seeks to keep the competitive edge while utilizing current inventory,

the complex mechanics of routing and communication maintainability require study

and research. This task involves routing asset types with specific roles and capabilities

to targets, ensuring prerequisites or arrival requirements are met. Regarding civil

application, routing natural disaster supply relief and reconstruction efforts involve

similar routing procedures with affected regions and towns. This research explored

three problems relating to complex multi-asset asset routing, developed contributing

solution methodologies, and explored results based on designed test instance data.

First, this research developed and evaluated a Hierarchical Asset Tiling and Rout-

ing Heuristic (HATRH) to implement Mosaic Warfare for an enterprise of aerial assets

comprised of airborne sensors, command, and control aircraft, and strike aircraft seek-

ing to move towards and destroy a set of stationary targets. The analysis explored the

inefficiencies of routing and munitions required for dynamic asset movement in terms

of individual and group asset agency. HATRH explored a practical implementation

of a decentralized, regional command-and-control when centralized control may not

be feasible. Assets performed algorithmic movements to visit all stationary targets

maintaining necessary proximal relationship distance.

HATRH showed across multiple scenario types that inefficiencies increased as oper-

ational congestion increased. The user-defined parameter to determine the frequency

of asset grouping showed little-to-no effect on performance efficiency. In contrast, a

similar user-defined parameter preserving movement allowed to individual assets rel-

125

ative to group movement did affect performance relative to scenario type, resulting in

a recommended default range of this HATRH parameter given asset-target placement

for a given scenario.

Next, this research developed and explored a mixed-integer linear math program-

ming formulation for the collaborative vehicle routing problem with proximity service

(CoVRP-PS). This model required multiple asset types to service demand collabo-

ratively, with a subset of asset types being allowed proximal deliveries. Adjustable

time windows enforced the near-simultaneous arrival to model the collaborative be-

havior of assets. Instances developed for initial testing of CoVRP-PS are intended to

significantly challenge the identification of high-quality, feasible solutions by a lead-

ing commercial solver, highlighting problem parameters. Testing also informed the

development of two permutations of a model decomposition heuristic and two prepro-

cessing techniques designed to improve performance in identifying a higher quality

and larger quantity of solutions.

A designed experiment compared testing of the nine resulting solution methods

over a set of instances. Testing revealed parametric groups whose direct optimization

performed poorly or could not identify a solution within a given time limit. Pareto

front analysis of the solution methods showed which provided the greatest merit. The

most feasible solutions were identified by first routing asset types that provide prox-

imal service but doing so by imposing lower bounds on demand service windows, as

informed by a Nearest Neighbor preprocessing technique. However, this technique

degrades solution quality, so viable alternatives include bounds informed by a pre-

processing technique based on the Floyd-Warshall algorithm. The easiest to solve

instance remained best solved through direct optimization via a commercial solver.

Finally, an in-depth analysis of routing for multi-agent routing explored predeter-

mined sequential order over a contested network. The last research section formulated

126

a bilevel problem, wherein the lower-level problem routes different asset types to sat-

isfy demands while minimizing the cumulative service times. At the same time, the

upper-level simultaneously seeks to identify a strategy that imposes a bounded num-

ber of disruptive actions that slow down agent travel on subsets of the network. To

solve the bilevel problem, a greedy construction heuristic (GCH) found a baseline

solution. After that, a simulated annealing metaheuristic (SA) and enhanced sim-

ulated annealing (eSA) leveraging a priority-based candidate solution identification

and a tabu list of previously considered solutions explore the feasible solution space

looking for a possible improvement. Over a set of developed test instances, SA and

eSA improved upon GCH solutions, with the latter doing so more consistently.

In addition to recommendations and future research excursions mentioned in each

research piece’s respective section, further study is worth exploring. HATRH and

CoVRP-PS methodologies do not include an adversary removing the temporary pres-

ence of an asset or limiting travel on arcs. More so, comparing the methodologies to

real-world networks to see how performance is transcribed to fit realistic or historic

scenarios, allowing for the complete connection between the research outlined and the

desirable application.

127

Bibliography

Aksen, D. and Aras, N. (2013), ‘A matheuristic for leader-follower games involving
facility location-protection-interdiction decisions’, Metaheuristics for Bi-level Op-
timization pp. 115–151.

Albers, S., Eilts, S., Even-Dar, E., Mansour, Y. and Roditty, L. (2014), ‘On Nash
equilibria for a network creation game’, ACM Transactions on Economics and Com-
putation 2(1), 1–27.

Alcazar, V. (2012), ‘Crisis management and the anti-access/area denial problem’,
Strategic Studies Quarterly 6(4), 42–70.

Anbuudayasankar, S., Ganesh, K., Mohapatra, S. et al. (2016), Models for practical
routing problems in logistics, Springer, New York, NY.

Arora, S. and Barak, B. (2009), Computational complexity: a modern approach, Cam-
bridge University Press, Cambridge, UK.

Badri, M. A., Mortagy, A. K. and Alsayed, C. A. (1998), ‘A multi-objective model for
locating fire stations’, European Journal of Operational Research 110(2), 243–260.

Bard, J. F. (2013), Practical bilevel optimization: algorithms and applications, Vol. 30,
Springer Science & Business Media, New York, NY.

Bard, J. F. and Falk, J. E. (1982), ‘An explicit solution to the multi-level programming
problem’, Computers & Operations Research 9(1), 77–100.

Bard, J. F. and Moore, J. T. (1992), ‘An algorithm for the discrete bilevel program-
ming problem’, Naval Research Logistics 39(3), 419–435.

Barrie, D. (2019), ‘Anti-access/area denial: bursting the ‘no-go’ bubble?’.
URL: https://www.iiss.org/blogs/military-balance/2019/04/anti-access-area-
denial-russia-and-crimea

Baxter, A., Lagerman, H. W. and Keskinocak, P. (2019), ‘Quantitative modeling in
disaster management: A literature review’, IBM Journal of Research and Develop-
ment 64(1/2), 3–1.

Bazaraa, M. S., Jarvis, J. J. and Sherali, H. D. (2008), Linear programming and
network flows, 4 edn, John Wiley & Sons, Hoboken, NJ.
URL: ht tp s: // ww w. wi le y. co m/ en -u s/ Li ne ar +P ro gr am mi ng +a nd +N
et wo rk +F lo ws ,+4 th +E di ti on -p -9 78 04 70 46 27 20

Bialas, W. F. and Karwan, M. H. (1984), ‘Two-level linear programming’, Manage-
ment Science 30(8), 1004–1020.

128

https://www.wiley.com/en-us/Linear+Programming+and+Network+Flows,+4th+Edition-p-9780470462720
https://www.wiley.com/en-us/Linear+Programming+and+Network+Flows,+4th+Edition-p-9780470462720

Bräysy, O. and Gendreau, M. (2005a), ‘Vehicle routing problem with time windows,
Part I: Route construction and local search algorithms’, Transportation Science
39(1), 104–118.

Bräysy, O. and Gendreau, M. (2005b), ‘Vehicle routing problem with time windows,
Part II: Metaheuristics’, Transportation Science 39(1), 119–139.

Brown, G., Carlyle, M., Salmerón, J. and Wood, K. (2006), ‘Defending critical in-
frastructure’, Interfaces 36(6), 530–544.

Cabot, A. (2018), ‘Fortress Russia: How can NATO defeat moscow’s A2/AD strategy
and air defenses?’.
URL: https://nationalinterest.org/blog/buzz/fortress-russia-how-can-nato-defeat-
moscows-a2ad-strategy-and-air-defenses-35087

Calvete, H. I., Gale, C. and Mateo, P. M. (2008), ‘A new approach for solving lin-
ear bilevel problems using genetic algorithms’, European Journal of Operational
Research 188(1), 14–28.

Ceselli, A., Righini, G. and Salani, M. (2009), ‘A column generation algorithm for a
rich vehicle-routing problem’, Transportation Science 43(1), 56–69.

Chang, K.-H., Hsiung, T.-Y. and Chang, T.-Y. (2022), ‘Multi-commodity distribution
under uncertainty in disaster response phase: Model, solution method, and an
empirical study’, European Journal of Operational Research .

Chen, C., Demir, E. and Huang, Y. (2021), ‘An adaptive large neighborhood search
heuristic for the vehicle routing problem with time windows and delivery robots’,
European Journal of Operational Research 294(3), 1164–1180.

Chiang, W.-C. and Russell, R. A. (1996), ‘Simulated annealing metaheuristics for
the vehicle routing problem with time windows’, Annals of Operations Research
63, 3–27.

Church, R. and Murray, A. (2018), Location Covering Models: History, Applications
and Advancements, Advances in Spatial Science, Springer International Publishing,
New York, NY.

Clark, B., Patt, D. and Walton, T. A. (2021), ‘Implementing decision-centric warfare:
Elevating command and control to gain an optionality advantage’.
URL: https://www.hudson.org/research/16729

Cliff, R., Burles, M., Chase, M. S., Eaton, D. and Pollpeter, K. L. (2007), Entering
the dragon’s lair: Chinese antiaccess strategies and their implications for the united
states, Technical report, RAND CORP SANTA MONICA CA.

Colby, E. (2019), ‘How to win America’s next war’, Foreign Policy 5.

129

Colson, B., Marcotte, P. and Savard, G. (2007), ‘An overview of bilevel optimization’,
Annals of Operations Research 153, 235–256.

Conn, A. R., Gould, N. I. and Toint, P. L. (2000), Trust region methods, SIAM,
Philadelphia, PA.

Cooper, L. (1963), ‘Location-allocation problems’, Operations Research 11(3), 331–
343.

Cordeau, J.-F., Desaulniers, G., Desrosiers, J., Solomon, M. M. and Soumis, F. (2002),
The VRP with time windows, in P. Toth and D. Vigo, eds, ‘The Vehicle Routing
Problem’, SIAM, Philadelphia, PA, chapter 7, pp. 157–193.

Costello, J., Mattis, P. and McReynolds, J. (2016), ‘Electronic warfare and the re-
naissance of Chinese information operations’, China’s Evolving Military Strategy
pp. 173–213.

Czumaj, A., Krysta, P. and Vöcking, B. (2002), Selfish traffic allocation for server
farms, in ‘Proceedings of the thiry-fourth annual ACM symposium on Theory of
Computing’, pp. 287–296.

Dantzig, G. B. and Ramser, J. H. (1959), ‘The truck dispatching problem’, Manage-
ment Science 6(1), 80–91.

DARPA News (2017), ‘Strategic technology office outlines vision for “mosaic war-
fare”’.
URL: ht tp s: // ww w. do nc io .n av y. mi l/ (5u dz c1 55 ib dg ke 45 4e po ce
55) / CH IP S/ Ar ti cl eD et ai ls .a sp x? I D= 93 05

DARPA Tiles Together a Vision of Mosaic Warfare (2020).
URL: https://www.darpa.mil/work-with-us/darpa-tiles-together-a-vision-of-
mosiac-warfare

Dempe, S. (2002), Foundations of bilevel programming, Springer Science & Business
Media, New York, NY.

Dempe, S., Kalashnikov, V. and Rıos-Mercado, R. Z. (2005), ‘Discrete bilevel pro-
gramming: Application to a natural gas cash-out problem’, European Journal of
Operational Research 166(2), 469–488.

DeNegre, S. T. and Ralphs, T. K. (2009), A branch-and-cut algorithm for integer
bilevel linear programs, in ‘Operations research and cyber-infrastructure’, Springer,
pp. 65–78.

Deptula, D. A., Penney, H. R., Stutzriem, L. A. and Gunzinger, M. (2019), Restor-
ing America’s Military Competitiveness: Mosaic Warfare, Mitchell Institute for
Airpower Studies, Arlington, VA.

130

https://www.doncio.navy.mil/(5udzc155ibdgke454epoce55)/CHIPS/ArticleDetails.aspx?ID=9305
https://www.doncio.navy.mil/(5udzc155ibdgke454epoce55)/CHIPS/ArticleDetails.aspx?ID=9305

Desrochers, M., Desrosiers, J. and Solomon, M. (1992), ‘A new optimization algo-
rithm for the vehicle routing problem with time windows’, Operations Research
40(2), 342–354.

Desrochers, M. and Laporte, G. (1991), ‘Improvements and extensions to the
miller-tucker-zemlin subtour elimination constraints’, Operations Research Letters
10(1), 27–36.

Dimitri, P. (1998), Bertsekas Network Optimization: Continuous and Discrete Mod-
els, Athena Scientific Publisher, Belmont, MA.

Dorigo, M. and Di Caro, G. (1999), Ant colony optimization: a new meta-heuristic,
in ‘Proceedings of the 1999 Congress on Evolutionary Computation’, Vol. 2, IEEE,
pp. 1470–1477.

Dougherty, C. M. (2019), Why America Needs a New Way of War, Center for a New
American Security, Washington, DC.

Drezner, Z. and Hamacher, H. (2004), Facility Location: Applications and Theory,
Springer Berlin Heidelberg, Germany.

Ehrgott, M. (2008), ‘Multiobjective optimization’, Ai Magazine 29(4), 47–47.

Eiselt, H. A. and Marianov, V. (2012), ‘Mobile phone tower location for survival after
natural disasters’, European Journal of Operational Research 216(3), 563–572.

Engstrom, J. (2018), Systems confrontation and system destruction warfare: How the
Chinese People’s Liberation Army seeks to wage modern warfare, Technical report,
RAND Corporation Santa Monica United States.

Fabrikant, A., Luthra, A., Maneva, E., Papadimitriou, C. H. and Shenker, S. (2003),
On a network creation game, in ‘Proceedings of the twenty-second annual sympo-
sium on Principles of Distributed Computing’, pp. 347–351.

Farahani, R. Z., Asgari, N., Heidari, N., Hosseininia, M. and Goh, M. (2012), ‘Cov-
ering problems in facility location: A review’, Computers & Industrial Engineering
62(1), 368–407.

Farahani, R. Z., Hekmatfar, M., Fahimnia, B. and Kazemzadeh, N. (2014), ‘Hierarchi-
cal facility location problem: Models, classifications, techniques, and applications’,
Computers & Industrial Engineering 68, 104–117.

Ferber, J. and Weiss, G. (1999), Multi-agent systems: an introduction to distributed
artificial intelligence, Vol. 1, Addison-Wesley Reading, Boston, MA.

Fix, E. and Hodges Jr, J. L. (1952), Discriminatory analysis-nonparametric discrim-
ination: Small sample performance, Technical Report Project 21-49-004, Report
Number 11, Air University School of Aviation Medicine, Randolph Field, TX.
URL: https://apps.dtic.mil/sti/pdfs/ADA800391.pdf

131

Floyd, R. W. (1962), ‘Algorithm 97: Shortest path’, Communications of the ACM
5(6), 345.

Frank, M. (1981), ‘The Braess Paradox’, Mathematical Programming 20(1), 283–302.

Fravel, M. T. (2016), ‘China’s changing approach to military strategy: The science
of military strategy from 2001 and 2013’, The Evolution of China’s Military Strat-
egy (Washington, DC: Brookings Forthcoming), MIT Political Science Department
Research Paper .

Frey, C. M., Jungwirth, A., Frey, M. and Kolisch, R. (2022), ‘The vehicle routing
problem with time windows and flexible delivery locations’, European Journal of
Operational Research .

Glover, F. (1986), ‘Future paths for integer programming and links to artificial intel-
ligence’, Computers & Operations Research 13(5), 533–549.

Goel, A. (2010), A column generation heuristic for the general vehicle routing prob-
lem, in C. Blum and R. Battiti, eds, ‘LION 2010: International Conference on
Learning and Intelligent Optimization’, Springer, Berlin, pp. 1–9.

Goel, A. and Gruhn, V. (2008), ‘A general vehicle routing problem’, European Journal
of Operational Research 191(3), 650–660.

Golden, B. L., Raghavan, S. and Wasil, E. A. (2008), The vehicle routing problem:
latest advances and new challenges, Springer, New York, NY.

Golden, B., Wang, X. and Wasil, E. (2023), The evolution of the vehicle routing prob-
lem—a survey of vrp research and practice from 2005 to 2022, in ‘The Evolution
of the Vehicle Routing Problem’, Springer, New York, NY, pp. 1–64.

Hakimi, S. L. (1965), ‘Optimum distribution of switching centers in a communi-
cation network and some related graph theoretic problems’, Operations Research
13(3), 462–475.

Hoehn, J. R. (2022), Advanced battle management system (abms), Technical report,
Congressional Research Service In Focus.

Holland, J. H. (1973), ‘Genetic algorithms and the optimal allocation of trials’, SIAM
Journal on Computing 2(2), 88–105.

Ishizuka, Y. and Aiyoshi, E. (1992), ‘Double penalty method for bilevel optimization
problems’, Annals of Operations Research 34(1), 73–88.

Israeli, E. and Wood, R. K. (2002), ‘Shortest-path network interdiction’, Networks:
An International Journal 40(2), 97–111.

132

Jane’s (2021), All the worlds aircraft: development & production, Jane’s, Coulsdon,
United Kingdom.

Janjarassuk, U. and Nakrachata-Amon, T. (2015), A simulated annealing algorithm
to the stochastic network interdiction problem, in ‘2015 IEEE International Confer-
ence on Industrial Engineering and Engineering Management’, IEEE, pp. 230–233.

Jayarathna, N., Lanel, J. and Juman, Z. (2020), ‘Five years of multi-depot vehicle
routing problems’, Journal of Sustainable Development of Transport and Logistics
5(2), 109–123.

Jeroslow, R. G. (1985), ‘The polynomial hierarchy and a simple model for competitive
analysis’, Mathematical Programming 32(2), 146–164.

Jouzdani, J., Sadjadi, S. J. and Fathian, M. (2013), ‘Dynamic dairy facility location
and supply chain planning under traffic congestion and demand uncertainty: A
case study of tehran’, Applied Mathematical Modelling 37(18-19), 8467–8483.

Karp, R. M. (1972), Reducibility among combinatorial problems, in ‘Complexity of
computer computations’, Springer, New York, NY, pp. 85–103.

Karp, R. M. and Papadimitriou, C. H. (1982), ‘On linear characterizations of combi-
natorial optimization problems’, SIAM Journal on Computing 11(4), 620–632.

Kass, L. (2019), ‘US air power: The imperative for modernization (buy the f-35)’.
URL: https://breakingdefense.com/2019/03/us-air-power-the-imperative-for-
modernization-buy-the-f-35/

Kennedy, J. and Eberhart, R. (1995), Particle swarm optimization, in ‘Proceedings
of ICNN’95-International Conference on Neural Networks’, Vol. 4, IEEE, pp. 1942–
1948.

Kirkpatrick, S., Gelatt Jr, C. D. and Vecchi, M. P. (1983), ‘Optimization by simulated
annealing’, Science 220(4598), 671–680.

Koutsoupias, E. and Papadimitriou, C. (2009), ‘Worst-case equilibria’, Computer
science Review 3(2), 65–69.

Kuo, R.-J., Lee, Y., Zulvia, F. E. and Tien, F. (2015), ‘Solving bi-level linear pro-
gramming problem through hybrid of immune genetic algorithm and particle swarm
optimization algorithm’, Applied Mathematics and Computation 266, 1013–1026.

Kuo, R., Lu, S.-H., Lai, P.-Y. and Mara, S. T. W. (2022), ‘Vehicle routing prob-
lem with drones considering time windows’, Expert Systems with Applications
191, 116264.

133

LaGrone, S. (2021), ‘Milley: China wants capability to take Taiwan by 2027, sees no
near-term intent to invade’.
URL: https://news.usni.org/2021/06/23/milley-china-wants-capability-to-take-
taiwan-by-2027-sees-no-near-term-intent-to-invade

Lei, X., Shen, S. and Song, Y. (2018), ‘Stochastic maximum flow interdiction problems
under heterogeneous risk preferences’, Computers & Operations Research 90, 97–
109.

Lenstra, J. K. and Kan, A. R. (1976), ‘On general routing problems’, Networks
6(3), 273–280.

Lessin, A. M., Lunday, B. J. and Hill, R. R. (2018), ‘A bilevel exposure-oriented
sensor location problem for border security’, Computers & Operations Research
98, 56–68.

Li, H., Chen, J., Wang, F. and Bai, M. (2021), ‘Ground-vehicle and unmanned-aerial-
vehicle routing problems from two-echelon scheme perspective: A review’, European
Journal of Operational Research 294(3), 1078–1095.

Liu, B., Sheu, J.-B., Zhao, X., Chen, Y. and Zhang, W. (2020), ‘Decision making
on post-disaster rescue routing problems from the rescue efficiency perspective’,
European Journal of Operational Research 286(1), 321–335.

Luis, E., Dolinskaya, I. S. and Smilowitz, K. R. (2012), ‘Disaster relief routing: Inte-
grating research and practice’, Socio-economic Planning Sciences 46(1), 88–97.

Lunday, B. J. and Sherali, H. D. (2012a), ‘Minimizing the maximum network flow:
models and algorithms with resource synergy considerations’, Journal of the Oper-
ational Research Society 63, 1693–1707.

Lunday, B. J. and Sherali, H. D. (2012b), ‘Network interdiction to minimize the
maximum probability of evasion with synergy between applied resources’, Annals
of Operations Research 196, 411–442.

Lunday, B. J., Sherali, H. D. and Lunday, K. E. (2012), ‘The coastal seaspace pa-
trol sector design and allocation problem’, Computational Management Science
9(4), 483–514.

Ma, M., Huang, H., Song, X., Peña-Mora, F., Zhang, Z. and Chen, J. (2022), ‘Optimal
sizing and operations of shared energy storage systems in distribution networks: A
bi-level programming approach’, Applied Energy 307, 118170.

Magnuson, S. (2018), ‘Darpa pushes ‘Mosaic Warfare’ concept’.
URL: https://www.nationaldefensemagazine.org/articles/2018/11/16/darpa-
pushes-mosaic-warfare-concept

134

Marques-Silva, J. P. and Sakallah, K. A. (1999), ‘Grasp: A search algorithm for
propositional satisfiability’, IEEE Transactions on Computers 48(5), 506–521.

Mattis, J. (2018), Summary of the 2018 National Defense Strategy of the United States
of America, Department of Defense, Washington, DC.

Michalopoulos, D. P., Barnes, J. W. and Morton, D. P. (2015), ‘Prioritized interdic-
tion of nuclear smuggling via tabu search’, Optimization Letters 9, 1477–1494.

Miehle, W. (1958), ‘Link-length minimization in networks’, Operations Research
6(2), 232–243.

Miller, C. E., Tucker, A. W. and Zemlin, R. A. (1960), ‘Integer programming formu-
lation of traveling salesman problems’, Journal of the Association for Computing
Machinery 7(4), 326–329.

Moore, J. T. and Bard, J. F. (1990), ‘The mixed integer linear bilevel programming
problem’, Operations Research 38(5), 911–921.

Mulvenon, J. C., Tanner, M. S., Chase, M. S., Frelinger, D., Gompert, D. C., Libicki,
M. C. and Pollpeter, K. L. (2006), Option Four: Chinese Network-Centric Warfare,
1 edn, RAND Corporation, chapter 7, pp. 133–144.

Nadizadeh, A., Sahraeian, R., Zadeh, A. S. and Homayouni, S. M. (2011), ‘Using
greedy clustering method to solve capacitated location-routing problem’, African
Journal of Business Management 5(21), 8470–8477.

Nallusamy, R., Duraiswamy, K., Dhanalaksmi, R. and Parthiban, P. (2010), ‘Op-
timization of multiple vehicle routing problems using approximation algorithms’,
arXiv preprint arXiv:1001.4197 .

Neagoe, V. and Borşa, S.-S. (2019), ‘Anti-access/area denial strategy–conventional
war, hybrid war or asymmetric war?’, Strategic Impact 70/71, 15–20.
URL: https://www.ceeol.com/search/article-detail?id=853247

Nelder, J. A. and Mead, R. (1965), ‘A simplex method for function minimization’,
The Computer Journal 7(4), 308–313.

Nemhauser, D. B. G. and Wolsey, L. (1993), Integer programming and combinatorial
optimization, Springer, New York, NY.

Ochmanek, D. A. (2022), Determining the military capabilities most needed to
counter china and russia: A strategy-driven approach, Technical report, RAND
CORP SANTA MONICA CA.

O’Donoughue, N. A., McBirney, S. and Persons, B. (2021), Distributed kill chains:
Drawing insights for Mosaic Warfare from the immune system and from the navy,
Technical report, Rand Corporation Arlington.

135

Osman, I. H. (1993), ‘Metastrategy simulated annealing and tabu search algorithms
for the vehicle routing problem’, Annals of Operations Research 41, 421–451.

Ostrowski, J., Linderoth, J., Rossi, F. and Smriglio, S. (2011), ‘Orbital branching’,
Mathematical Programming 126, 147–178.

Parsafard, M. and Li, X. (2021), ‘Sensor location design for interdicting mobile trav-
elers with probabilistic space-time trajectories’, Transportation Research Part C:
Emerging Technologies 132, 103420.

Perakis, G. and Roels, G. (2007), ‘The price of anarchy in supply chains: Quantifying
the efficiency of price-only contracts’, Management Science 53(8), 1249–1268.

Perea, F. and Puerto, J. (2013), ‘Revisiting a game theoretic framework for the ro-
bust railway network design against intentional attacks’, European Journal of Op-
erational Research 226(2), 286–292.

Photonics Media (2019), ‘Piecing together the future battlefield with Mosaic Warfare
at DCS’.
URL: ht tp s: // ww w. ph ot on ic s. co m/ Ar ti cl es /P ie ci ng T og et he

r t he F ut ur e B at tl ef ie ld w it h / a6 45 71

Pickrell, R. (2019), ‘The US has been getting ‘its ass handed to it’ in simulated war
games against Russia and China, analysts say’, Task & Purpose 8.
URL: https://taskandpurpose.com/news/russia-china-war-games/

Robbins, M. J. and Lunday, B. J. (2016), ‘A bilevel formulation of the pediatric
vaccine pricing problem’, European Journal of Operational Research 248(2), 634–
645.

Roughgarden, T. (2009), Intrinsic robustness of the price of anarchy, in ‘Proceedings
of the forty-first annual ACM symposium on Theory of Computing’, pp. 513–522.

Sadati, M. E. H., Aksen, D. and Aras, N. (2020a), ‘The r-interdiction selective multi-
depot vehicle routing problem’, International Transactions in Operational Research
27(2), 835–866.

Sadati, M. E. H., Aksen, D. and Aras, N. (2020b), ‘A trilevel r-interdiction selective
multi-depot vehicle routing problem with depot protection’, Computers & Opera-
tions Research 123, 104996.

Sahin, K. H. and Ciric, A. R. (1998), ‘A dual temperature simulated annealing ap-
proach for solving bilevel programming problems’, Computers & Chemical Engi-
neering 23(1), 11–25.

Santillán, C. G., Reyes, L. C., Rodŕıguez, M. L. M., Barbosa, J. J. G., López, O. C.,
Zarate, G. R. and Hernández, P. (2012), Variants of VRP to optimize logistics

136

https://www.photonics.com/Articles/Piecing_Together_the_Future_Battlefield_with_/a64571
https://www.photonics.com/Articles/Piecing_Together_the_Future_Battlefield_with_/a64571

management problems, in ‘Logistics Management and Optimization through Hy-
brid Artificial Intelligence Systems’, IGI Global, pp. 207–237.

Sapaty, P. S. (2019), ‘Mosaic warfare: From philosophy to model to solution’, Institute
of Mathematical Machines and Systems Problems National Academy of Sciences of
Ukraine 3(3), 17–34.

Schilling, D. A. (1993), ‘A review of covering problems in facility location’, Location
Science 1, 25–55.

Schwartz, M. (2010), ‘Defense acquisitions: How DoD acquires weapon systems and
recent efforts to reform the process’.

Shoham, Y. and Leyton-Brown, K. (2008), Multiagent systems: Algorithmic, game-
theoretic, and logical foundations, Cambridge University Press, Cambridge, United
Kingdom.

Sluijk, N., Florio, A. M., Kinable, J., Dellaert, N. and Van Woensel, T. (2022),
‘Two-echelon vehicle routing problems: A literature review’, European Journal of
Operational Research .

Smith, J. C. and Song, Y. (2020), ‘A survey of network interdiction models and
algorithms’, European Journal of Operational Research 283(3), 797–811.

Stackelberg, H. v. (1952), Theory of the market economy, Oxford University Press.

Starita, S. and Scaparra, M. P. (2021), ‘Assessing road network vulnerability: A
user equilibrium interdiction model’, Journal of the Operational Research Society
72(7), 1648–1663.

Szmigiera, M. (2022), ‘Ranking: Military spending by country 2021’.
URL: https://www.statista.com/statistics/262742/countries-with-the-highest-
military-spending

Thakoor, O., Garg, J. and Nagi, R. (2019), ‘Multiagent UAV routing: A game theory
analysis with tight price of anarchy bounds’, IEEE Transactions on Automation
Science and Engineering 17(1), 100–116.

Tilk, C., Olkis, K. and Irnich, S. (2021), ‘The last-mile vehicle routing problem with
delivery options’, OR Spectrum 43(4), 877–904.

Tirpak, J. A. (2000), ‘Find, fix, track, target, engage, assess’.
URL: ht tp s: // ww w. ai rf or ce ma g. co m/ ar ti cl e/ 07 00 fi nd /

Toth, P. and Vigo, D. (2002), The Vehicle Routing Problem (Monographs on Discrete
Mathematics and Applications, Series Number 9, SIAM, Philadelpia, Pennsylvania.

137

https://www.airforcemag.com/article/0700find/

Toth, P. and Vigo, D. (2014), Vehicle routing: problems, methods, and applications,
SIAM, Philadelphia, PA.

United States Joint Chiefs of Staff (2021), Joint Publication 3-30: Joint Air Opera-
tions, Washington, DC.

U.S. Air Force (2014), ‘RQ-4 Global Hawk’.
URL: https : //www.af.mil/About − Us/Fact −
Sheets/Display/Article/104516/rq − 4− global − hawk/

U.S. Air Force (2015), ‘E-3 Sentry (AWACS)’.
URL: ht tp s: // ww w. af .m il /A bo ut -U s/ Fa ct -S he et s/ Di sp la y/ Ar ti
cl e/ 10 45 04 /e -3 -s en tr y-aw ac s/

U.S. Air Force (2017), ‘Joint Direct Attack Munition GBU- 31/32/38’.
URL: https://www.af.mil/About-Us/Fact-Sheets/Display/Article/104572/joint-
direct-attack-munition-gbu-313238/

U.S. Air Force (2021), ‘F-16 Fighting Falcon’.
URL: https://www.af.mil/About-Us/Fact-Sheets/Display/Article/104505/f-16-
fighting-falcon/

Van Breedam, A. (1995), ‘Improvement heuristics for the vehicle routing prob-
lem based on simulated annealing’, European Journal of Operational Research
86(3), 480–490.

Verter, V. and Dasci, A. (2002), ‘The plant location and flexible technology acquisition
problem’, European Journal of Operational Research 136(2), 366–382.

Vincent, F. Y., Redi, A. P., Hidayat, Y. A. and Wibowo, O. J. (2017), ‘A simulated
annealing heuristic for the hybrid vehicle routing problem’, Applied Soft Computing
53, 119–132.

Wang, G., Wang, X., Wan, Z. and Lv, Y. (2007), ‘A globally convergent algorithm
for a class of bilevel nonlinear programming problem’, Applied Mathematics and
Computation 188(1), 166–172.

Weber, A. (1909), Theory of the location of industries, University of Chicago Press,
Chicago, IL.

Wood, R. K. (1993), ‘Deterministic network interdiction’, Mathematical and Com-
puter Modelling 17(2), 1–18.

Wu, L.-Y., Zhang, X.-S. and Zhang, J.-L. (2006), ‘Capacitated facility location prob-
lem with general setup cost’, Computers & Operations Research 33(5), 1226–1241.

138

https://www.af.mil/About-Us/Fact-Sheets/Display/Article/104504/e-3-sentry-awacs/
https://www.af.mil/About-Us/Fact-Sheets/Display/Article/104504/e-3-sentry-awacs/

Yabuta, K. and Kitazawa, H. (2008), Optimum camera placement considering camera
specification for security monitoring, in ‘IEEE International Symposium on Circuits
and Systems’, pp. 2114–2117.

Ye, D., Chen, L. and Zhang, G. (2021), ‘On the price of anarchy of two-stage machine
scheduling games’, Journal of Combinatorial Optimization 42(3), 616–635.

Yevtodyeva, M. (2022), ‘Development of the chinese a2/ad system in the context of
us–china relations’, Herald of the Russian Academy of Sciences 92(Suppl 6), S534–
S542.

Yin, Y. (2000), ‘Genetic-algorithms-based approach for bilevel programming models’,
Journal of Transportation Engineering 126(2), 115–120.

Yousefi, A. and Donohue, G. (2004), Temporal and spatial distribution of airspace
complexity for air traffic controller workload-based sectorization, in ‘AIAA 4th
Aviation Technology, Integration and Operations (ATIO) Forum’, p. 6455.

Zhang, B., Zhao, M. and Hu, X. (2022), ‘Location planning of electric vehicle charg-
ing station with users’ preferences and waiting time: Multi-objective bi-level pro-
gramming model and HNSGA-II algorithm’, International Journal of Production
Research pp. 1–30.

Zokaee, S., Bozorgi-Amiri, A. and Sadjadi, S. J. (2016), ‘A robust optimization model
for humanitarian relief chain design under uncertainty’, Applied Mathematical Mod-
elling 40(17-18), 7996–8016.

139

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704–0188

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including
suggestions for reducing this burden to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704–0188), 1215 Jefferson Davis Highway,
Suite 1204, Arlington, VA 22202–4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection
of information if it does not display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD–MM–YYYY) 2. REPORT TYPE 3. DATES COVERED (From — To)

4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

6. AUTHOR(S)

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION REPORT
NUMBER

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION / AVAILABILITY STATEMENT

13. SUPPLEMENTARY NOTES

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF:

a. REPORT b. ABSTRACT c. THIS PAGE

17. LIMITATION OF
ABSTRACT

18. NUMBER 19a. NAME OF RESPONSIBLE PERSON

19b. TELEPHONE NUMBER (include area code)

Standard Form 298 (Rev. 8–98)
Prescribed by ANSI Std. Z39.18

14–09–2023 Dissertation March 2021 — September 2023

Analysis of Multi-agent Routing Solution Methodologies Exploring a
Mosaic Warfare Strategy

Donnel, Stephen D., Capt, USAF

Air Force Institute of Technology
Graduate School of Engineering and Management (AFIT/EN)
2950 Hobson Way
WPAFB OH 45433-7765

AFIT-ENS-DS-23-S-014

Strategic Development Planning & Experimentation (SDPE) Office
Mr. David J. Myers
1864 4th Street
Wright-Patterson AFB, OH 45433
(937) 904-6539

SDPE

Distribution Statement A. Approved for Public Release; Distribution Unlimited

Recognizing that communication between assets may be possible locally but not globally (e.g., due to disruptions to a
communication network), Mosaic Warfare requires the movement and operation of multiple, dispersed assets in smaller
groups (i.e., tiles), within which exist hierarchical, functional relationships between assets. This research first evaluates a
heuristic for an enterprise of aerial assets comprised of airborne sensors, command and control, and strike aircraft seeking
to move towards and destroy stationary targets. Next, we examine routing multiple assets of different types over a
network to service demands in a collaborative manner, in that, when servicing a demand, the differing asset types must
do so nearly simultaneously. Finally, research explores routing multiple assets of different types over a network to service
demands in sequential order. Moreover, we seek to identify effective network disruption strategies with limited resources
to maximize the minimal cumulative service time. Within a bilevel programming structure for this Stackelberg game, the
upper-level problem determines the disruption strategy, and the lower-level problem routes the assets.

Multi-agent Routing, Hierarchical Assets, Mosaic Warfare, Adjustable Time Windows, Proximal Service, Model
Decomposition, Feasible Region Reduction, Bilevel Programming, Network Interdiction, Simulated Annealing, Game
Theory

U U U UU

OF
PAGES

155
Dr. Brian J. Lunday, AFIT/ENS

(937)-255-3636, x4624; Brian.Lunday@afit.edu

	Analysis of Multi-agent Routing Solution Methodologies Exploring a Mosaic Warfare Strategy
	Recommended Citation

	Abstract
	Dedication
	Acknowledgements
	List of Figures
	List of Tables
	Introduction
	Motivation and Background
	Research Objective and Scope
	Organization of the Dissertation

	Analysis of a Distributed Command and Control Algorithm to Implement Mosaic Warfare
	Introduction
	Literature Review
	Statement of Contributions

	Solution Methodology
	Grouping Algorithm
	Tile Movement Algorithm
	Individual Asset Movement Algorithm
	Illustrative Application of an HATRH Iteration
	HATRH Evaluation Metrics

	Testing, Results, and Analysis
	Testing Results for Scenario 1
	Testing Results for Scenario 2
	Testing Results for Scenario 3
	HATRH Computational Run time

	Conclusions and Recommendations

	A Multiple Asset-type, Collaborative Vehicle Routing Problem with Proximal Servicing of Demands
	Introduction
	Literature Review
	Statement of Contributions

	Model Formulation
	Modeling Assumptions
	Mathematical Program

	Solution Methodology
	Two-stage Model Decomposition Heuristic
	Preprocessing Techniques to Bound Service Time Window Shifts
	Maximal Decomposition Heuristic

	Testing, Results, and Analysis
	Illustrative CoVRP-PS Instance
	Test Instance Generation and Computational Test Design
	Performance of Direct Optimization
	Comparative Testing Results on Tessellation Induced Networks

	Conclusions and Recommendations

	A Stackelberg Framework for Disrupting Coordinated, Multi-asset Routing and Sequential Servicing of Demands
	Literature Review
	Statement of Contributions

	Model Formulation and Solution Methodology
	Model Formulation
	Solution Methodology

	Testing, Results, and Analysis
	Illustrative Example
	Parameter Exploration
	Comparative Testing of Solution Methods
	Selected Excursional Analyses

	Conclusions and Recommendations

	Conclusions and Future Recommendations
	Bibliography

