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Abstract 

Accurately modeling the interdependent operation of critical infrastructure systems is an 

effective and efficient way of proactively evaluating system vulnerabilities and 

resiliency.  Infrastructure systems are designed to transport essential commodities from 

where they are produced to where they are consumed and network flow-based models are 

one of the most effective ways to simulate and quantify infrastructure performance.  The 

literature is populated with proposed models that must balance accuracy of 

interdependent operations, capability to include real-world considerations, and 

computational cost.  This research proposes an alternative network-flow based model 

called the Critical Infrastructure System Resiliency Model (CISRM) that focuses on 

modeling a subset of operational interdependencies and allows user-input damage 

scenarios to include partial functionality of components, restrict the available repair 

resources, and limit the number of work crews available to make repairs.  Due to the 

difficulties associated with obtaining real-world infrastructure data, this research 

demonstrated CISRM capabilities on a notional test network.  The damage scenario 

simulations demonstrated the superiority of CISRM in quickly restoring infrastructure 

services when compared to alternative restoration prioritization heuristics.  The 

simulations also show CISRM could be a powerful decision-making tool for weighing the 

costs and benefits of different levels of recovery investment and the potential impact on 

overall system resiliency. 
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CRITICAL INFRASTRUCTURE SYSTEM RESILIENCY MODELING USING 

MULTI-LAYER NETWORK OPTIMIZATION 

 

I.   Introduction 

Improving the resilience of critical infrastructure systems (CISs) is essential due 

to the outsized societal, economic, and security impacts associated with infrastructure 

disruptions.  CISs form the backbone of modern societies, providing a continuous flow of 

goods and services necessary for our common defense, economic security, and public 

health and safety (Department of Homeland Security, 2013).  Society is becoming 

increasingly dependent on CISs, and CISs are functioning in an increasingly 

interconnected way such that any disruption in these services has the potential to cascade 

into a catastrophic disruption (Sharkey et al., 2015, 2016).  Additionally, the frequency of 

CIS disruptions by natural and manmade disasters is increasing (Garay-Sianca & Nurre 

Pinkley, 2021a), and worldwide in 2020, natural hazards alone are estimated to have 

cause about $200 billion in economic losses (Jones et al., 2022).  As such, there has been 

an increasing amount of research into mitigating vulnerabilities to and speeding up the 

recovery of CISs. 

 Much of the previous research involved creating mathematical models to simulate 

CIS operation to help identify critical components to protect, or provide an optimized 

prioritization of components to repair (Almoghathawi et al., 2019; González et al., 2016; 

Sharkey et al., 2015).  Despite the numerous models that have been proposed, the nature 

of CISs, with their varying degrees of interdependency and multitude of ways to quantify 

resilience or performance, means that no single model will accurately depict all aspects or 
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impacts from a disruption (Enayaty Ahangar et al., 2020).  Additionally, mathematical 

modeling itself requires an inherent trade-off between comprehensiveness (i.e., the level 

of detail and factors included in the model), and the time, effort, and computational 

power required to run an analysis (Filippini & Silva, 2015; Ouyang, 2014). 

 One modeling approach that has been used is an economic-theory based approach 

in which infrastructures and their interdependencies are formulated as sectors in a 

Leontief input-output framework (Enayaty Ahangar et al., 2020; Haimes, Asce, Barry, 

Horowitz, Lambert, Asce, Santos, Crowther, et al., 2005; Ouyang, 2014).  Haimes and 

Jiang (2001) proposed a physical-based inoperability input-output model in which the 

physical interconnections between infrastructure systems were modeled as production 

and consumption quantities of specific commodities (Haimes, Asce, Barry, Horowitz, 

Lambert, Asce, Santos, Lian, et al., 2005).  By inputting a damage scenario as a degraded 

level of system performance, Haimes and Jiang were able to show the propagation of that 

disruption through the interdependent set of systems as an overall percent decrease in 

output (Haimes, Asce, Barry, Horowitz, Lambert, Asce, Santos, Crowther, et al., 2005).  

While this approach is effective at showing the risk to one system caused by a potential 

degradation in another on the macro-scale (Haimes, Asce, Barry, Horowitz, Lambert, 

Asce, Santos, Lian, et al., 2005), there is insufficient granularity in this approach to 

evaluate systems at the individual component level (Enayaty Ahangar et al., 2020; 

Ouyang, 2014) which is critical to informing resiliency investments and repair activities. 
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 A second approach, which ultimately suffers from the same lack of granularity as 

the above-mentioned Leontief-based approach, is using a system engineering or system 

dynamics-based approach (Ouyang, 2014).  This approach relies on input from subject 

matter experts to create a causal-loop diagram detailing the effects on one system based 

on a change or disruption in another (Ouyang, 2014).  The Critical Infrastructure 

Protection/Decision Support Tool (CIP/DSS) is one example of a system dynamics-based 

tool created by the joint effort of several U.S.-based national laboratories to show the 

macro-scale consequences of CIS disruptions (Ouyang, 2014).  While this may be useful 

for some purposes, determining actionable steps that can be taken to reduce specific 

system vulnerabilities or improve specific recovery procedures require component-level 

assessments, which this approach cannot provide (Ouyang, 2014). 

 The final methodology discussed here is using a network theory-based model.  In 

network models, CISs are reduced to sets of nodes and arcs and can be assessed both 

topologically (i.e., based on the number and direction of connections between networked 

components) and functionally (i.e., by simulating whether or not a system is capable of 

supporting a sufficient flow of commodities) (Zarghami & Gunawan, 2021).  For 

example, Lee et al. (2007) proposed the Interdependent Layer Network (ILN) model 

which uses a mixed-integer, flow-based model to generate a set of components to repair 

while seeking to minimize the cost of commodity flow and minimize unmet commodity 

demand.  Cavdaroglu et al. (2013) expanded this work and proposed a alternative model 

that generates a list of components to repair, as well as provides an optimized repair 
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schedule for the available repair crews, while minimizing the sum of flow costs, unmet 

demand costs, and the costs of restoration.  Almoghathawi et al. (2019) constructed a 

multi-objective optimization problem that sought to identify and schedule restoration of 

damaged components while both maximizing the overall system resilience and 

minimizing the total system operating and repair costs.  The increased functional details 

provided by these types of models allow them to identify critical components and 

optimize recovery prioritization (Ouyang, 2014).  However, these increased capabilities 

come at the cost of increased complexity and are computationally expensive (Ouyang, 

2014). 

 This research seeks to add to this body of knowledge by proposing a novel 

combination of network theory-based model capabilities that can provide CIS owners or 

emergency managers an alternative assessment of their system’s vulnerabilities and 

resilience.  The novel model proposed in this research is structured as a multi-objective 

optimization model which seeks to 1) maximize the overall resilience of an 

interdependent infrastructure system and 2) minimize the operating and restoration costs 

over a given time horizon.  This model is unique in that it expands on a consolidated 

interdependency formulation proposed by Enayaty Ahangar et al. (2020), simplifying the 

model constraint equations, while also incorporating a resource-constrained restoration 

environment, and multiple component condition states allowing for different levels of 

component performance.  When applied to a damaged network, the model generates an 
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optimized repair prioritization of damaged components based on resource and work crew 

availability, that balances overall system resilience and total system costs. 

 The remainder of this article is structured as follows: Section 2 provides a more 

comprehensive analysis of previously proposed network models, specifically how CIS 

interdependencies are identified and modeled, and how infrastructure resilience has been 

defined and quantified.  Section 3 describes the novel infrastructure model developed as 

part of this research including a detailed description of the notation used, the 

mathematical formulation, and the underlying assumptions.  Section 4 provides an 

illustrative application of the proposed model by using it to evaluate the recovery of a 

simulated, multi-layer infrastructure network, in response to several damage scenarios.  

Finally, Sections 5 and 6 provide a discussion of the insights gained by the use of this 

new model, and a discussion of the limitations and potential areas of future research. 
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II.  Literature Review 

The previous section provided a high-level overview of some of the types of 

modeling approaches that have been used in evaluating infrastructure interdependencies 

and resilience.  This section provides a more thorough discussion of previously 

developed network theory-based infrastructure models beginning with a discussion of the 

different types of CISs and which were of interest in this research.  Following that is a 

discussion of different approaches to the classification and impact that interdependencies 

have on the functioning and recovery of CISs, and how previous models attempted to 

capture the influences of these interdependencies.  This section concludes with a 

discussion of how previous models have attempted to measure cumulative infrastructure 

resiliency through the use of different performance metrics and resiliency curves. 

Infrastructure Interdependencies 

In 1997, the United States (U.S.) President’s Commission on Critical 

Infrastructure Protection (PCCIP) identified eight CISs (i.e., telecommunications, power 

distribution, natural gas and oil distribution, banking and finance, transportation, potable 

water distribution, government services, and emergency services) of which the security, 

continuity, and availability were deemed an urgent priority (President’s Commission on 

Critical Infrastructure Protection, 1997; Rinaldi et al., 2001).  This Commission defined 

infrastructure as, “a network of independent, mostly privately-owned, man-made systems 

and processes that function collaboratively and synergistically to produce and distribute a 

continuous flow of essential goods and services,” (President’s Commission on Critical 
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Infrastructure Protection, 1997; Rinaldi et al., 2001).  Since this first classification, 

understanding of what constitutes a CIS has evolved such that the U.S. Department of 

Homeland Security, in their latest National Infrastructure Protection Plan (NIPP) now 

lists 16 critical infrastructure sectors that should be safeguarded against disruption 

(Department of Homeland Security, 2013).  The newest classification of CISs includes 

additions such as healthcare facilities, manufacturing facilities, food and agriculture 

sectors, and the defense industrial base (Department of Homeland Security, 2013).  This 

expansion has led some in the field such as Sharkey et al. (2016) to draw the distinction 

between traditional civil infrastructure systems (i.e., power distribution, water 

distribution, transportation system, etc.) and social infrastructure (i.e., healthcare, food 

and agriculture, banking, etc.).  This distinction has implications for the types of 

interdependencies that can exist between CISs and how they can be modeled.  This 

research is primarily concerned with the traditional civil infrastructure systems most 

aligned with the PCCIP above (i.e., “a network of…man-made systems that function 

collaboratively…to produce a continuous flow of goods…” (President’s Commission on 

Critical Infrastructure Protection, 1997)). 

An important concept mentioned earlier and highlighted in the PCCIP definition 

above is the interdependent or collaborative nature of CISs.  Interdependencies address 

the obvious reality that CISs do not exist and operate in a vacuum or an isolated manner, 

and what occurs in one infrastructure can directly or indirectly affect operations in 

another infrastructure system (Ouyang, 2014; Rinaldi et al., 2001).  Additionally, when 
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seeking to generate a model to evaluate and improve the resilience of a network of CISs 

to large-scale disruptions, the literature shows that modeling a single infrastructure 

system in isolation is often insufficient for formulating effective restoration plans 

(González et al., 2016; Sharkey et al., 2015).  In order to obtain any realistic performance 

response and identify vulnerabilities and the recoverability of CISs, it is essential to 

include the impacts of interdependencies (Almoghathawi & Barker, 2019; González et 

al., 2016).  As technology has advanced, the quantity and complexity of 

interdependencies between CISs has increased and is credited with improvements in CIS 

control and operational efficiency (Almoghathawi et al., 2019; Enayaty Ahangar et al., 

2020; Ouyang, 2014).  However, with these operational improvements come increased 

vulnerabilities as interdependencies increase the potential for cascading failures, or the 

ability of disruptions to propagate from one infrastructure system to another 

(Almoghathawi et al., 2019; Enayaty Ahangar et al., 2020; Ouyang, 2014). 

 Rinaldi et al. (2001) is often cited as the first work that provided a framework for 

categorizing different types of interdependencies between CISs.  Rinaldi et al. (2001) 

posited four categories of interdependencies: physical, cyber, geographic, and logical.  

Physical and cyber interdependencies involve a physical or cyber linkage between 

infrastructure systems in which a commodity or information from one system is required 

as an input in another system.  A geographic interdependency involves a simple 

colocation of components from two or more systems as in a utility corridor or 

communication and power cables being located on the same utility poles.  Finally, the 
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logical interdependency category acts as a catch-all and is defined as any link without 

direct physical, cyber, or geographic connections (Ouyang, 2014; Rinaldi et al., 2001). 

As an alternative, Lee et al. (2007) utilized a five-category classification scheme 

of interdependencies: input dependence, mutual dependence, shared dependence, 

exclusive-or dependence, and colocation dependence.  The input and mutual 

interdependencies utilized by Lee et al. (2007) are analogous to a one-way and two-way 

physical or cyber interdependency where one system relies on an input from another, or 

both systems rely on inputs from the other.  The shared dependence category addresses 

the potential sharing of physical components between systems.  The exclusive-or 

dependence addresses the potential sharing of an infrastructure system to provide 

multiple services where only one service can be provided at a time (i.e., a transportation 

network that cannot provide access for emergency services and access for the shipment of 

goods at the same time and location).  Finally, the collocated dependence is simply a 

geographic colocation of multiple systems. 

 Taking the classification of interdependencies one step further, the classification 

schemes proposed in Rinaldi et al. (2001) and Lee et al. (2007) above, could themselves 

be considered a subset as operational interdependencies, meaning they can impact the 

daily operations of CISs (Garay-Sianca & Nurre Pinkley, 2021b; Sharkey et al., 2016).  

These operational interdependencies are responsible for cascading failures (Lee et al., 

2007; Sharkey et al., 2016).  Sharkey et al. (2016) proposed an entirely new category of 

interdependencies called restoration interdependencies, which they define as those that, 



10 

 

 

“occur whenever a restoration task, process, or activity in one infrastructure is impacted 

by the restoration (or lack thereof) of another infrastructure,” (Sharkey et al., 2016).  

Restoration interdependencies will only exist when a large-scale disaster causes damage 

to multiple CISs and the timing of restoration tasks has the ability to impact restoration 

tasks in other systems (Sharkey et al., 2016). 

The work by Sharkey et al. (2016) mentioned earlier brings up an important 

concept, that the list of applicable interdependencies will depend on the specific purpose 

of the model being created and the infrastructure systems being considered.  In general, 

these CIS network models can be categorized by their intended use as either performance 

evaluation models, design models, mitigation models, or recovery models (González et 

al., 2016).  Given the objective of enhancing overall CIS resiliency, this research focused 

on mitigation models, which centered around preparing or modifying systems to absorb 

disruptions, and recovery models, which focused on prioritizing the repair of failed 

components to restore system service (González et al., 2016).  Additionally, this research 

focused on a subset of operational interdependencies and their potential to cause 

cascading failures across multiple CISs.  Ouyang (2014) provides a review of several 

additional classification schemes of operational interdependencies and evaluates their 

ability to adequately classify a series of example interdependency scenarios.  The results 

suggest that only the classification scheme from Rinaldi et al. (2001) was able to 

adequately sort all the potential examples, but this was likely due to the logical 

interdependency category (i.e., the catch-all category) which was responsible for 
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classifying 60% of the example scenarios (Ouyang, 2014).  However, the examples 

proposed by Ouyang (2014) included potential impacts on CISs such as emergency 

services, food and agriculture, and public transportation.  These are considered to be 

social infrastructure systems, and are distinct from the traditional civil infrastructure 

systems that form the foundation of this research (Sharkey et al., 2016).  This research 

was primarily concerned with interdependencies that only affected traditional civil 

infrastructure systems, and that could be adequately represented as a flow between two 

systems (i.e., physical and cyber or input and mutual dependence). 

Quantifying Infrastructure Performance and Resilience  

 Having narrowed down the topics of interest for this research to disruption 

mitigation and recovery optimization models that consider a subset of operational 

dependencies, this section will now address how infrastructure performance and 

resilience have been evaluated in previous research, and how it was evaluated in this 

research.  Numerous approaches have been proposed to quantify CIS resilience.  Some of 

the most common methods used for quantifying resilience in network modeling include: 

1) resiliency curves, which display a system performance metric across time, 2) 

measuring topological metrics of a networked system (i.e., node degree, node or arc 

betweenness, etc.), or 3) by evaluating other system characteristics that act as indirect 

measures of resilience such as robustness, reliability, redundancy, or risk (Almoghathawi 

et al., 2019; Poulin & Kane, 2021; Zarghami & Gunawan, 2021).  The definition of 

resilience used in this research refers to four different system abilities: 1) the ability to 
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prepare and plan for, 2) absorb, 3) recover from, and 4) adapt to future disruptions 

(National Research Council, 2012; Poulin & Kane, 2021).  While network topological 

metrics, and measurements of redundancy, robustness, or risk can be helpful in 

evaluating a CIS’s preparation for and absorption of a disruptive event, they are 

insufficient in evaluating an interdependent system’s true vulnerabilities and operation 

(Alderson et al., 2015), something necessary to determine a system’s ability to recover 

from a disruption.  As such, resilience curves have emerged as one of the most effective 

methods to evaluate CIS resilience, and are the primary method utilized in this research.  

Almoghathawi et al. (2019) provide a visual representation of the different phases of 

system performance that should be considered when evaluating system resilience and 

generating a resiliency curve (Figure 1). 

 

 

Figure 1: Example of resiliency curve showing system performance, 𝜑(𝑡), through 

different phases of a disruptive event (Almoghathawi et al., 2019) 
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The fundamental purpose of CIS’s, the provision of services or commodities for 

use by the general population or other infrastructure systems (Lee et al., 2007; Poulin & 

Kane, 2021).  When there is a disruption, either physical or functional to a component of 

the system, it cannot provide its usual services at the required levels and there should be a 

measurable decrease in performance level (Lee et al., 2007).  Poulin and Kane (2021) 

provide a discussion of several types of system performance metrics (i.e., 𝜑(𝑡) in Figure 

1) that can be utilized in resilience curves, as well as discussion of their strengths and 

weaknesses.  Poulin and Kane (2021) identify three categories of infrastructure system 

performance metrics: 1) availability measures, 2) productivity measures, and 3) quality 

measures.  Availability measures are the most commonly referenced metrics throughout 

the literature and describe the capacity or connectivity of an infrastructure system often 

via network topology metrics (Poulin & Kane, 2021).  Productivity measures take into 

consideration the actual quantity of commodities or services provided by the system in 

terms of rate of flow or consumer demand met (Poulin & Kane, 2021).  Finally, quality 

measures take more specific contextual factors into consideration to evaluate how well 

the services provided are satisfying specific consumer needs (i.e., water quality, travel 

time, etc.) (Poulin & Kane, 2021).  From an engineering and modeling perspective, 

availability and productivity measures are the most applicable in evaluating infrastructure 

system resilience and are the primary categories of performance metrics utilized in this 

research. 
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This section concludes with a discussion of several previously proposed CIS 

mitigation and restoration models that provided the foundation for the current research, 

and how these previous models quantified infrastructure performance and resilience.  

First, Lee et al. (2007) constructed a model that measured system performance as the 

quantity of slack, or unmet demand, in a system, and tried to minimize the total system 

cost which included a penalty cost associated with slack.  Slack was determined as the 

difference between baseline demand from a node and the quantity a system is able to 

supply in a degraded state (Cavdaroglu et al., 2013; González et al., 2016; Lee et al., 

2007).  While the work of Lee et al. (2007) successfully determines a set of components 

to repair while incorporating their five types of interdependencies, one critique is that 

their model, in that iteration, does not sequence the repairs or consider the assignment 

and scheduling of work crews (Almoghathawi et al., 2019).  Cavdaroglu et al. (2013) 

expand on the work by Lee et al. (2007) while maintaining a similar measure of system 

performance, minimizing unmet demand.  However, Cavdaroglu et al. (2013) produced a 

model that considers both the sequencing and scheduling of the restoration tasks not 

found in the Lee et al. (2007) work, and also incorporates restoration costs into the 

overall cost minimization objective function.  González et al. (2016) constructed a similar 

model formulation relying on a penalty cost associated with unmet demand, but also 

included additional repair cost considerations associated with collocated components and 

site preparation (Almoghathawi et al., 2019).  Enayaty Ahangar et al. (2020) proposed a 

slightly different measure of system performance, node functionality, as determined by 
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the system’s ability to deliver a sufficient quantity of commodities to meet the nodes 

demand, and awarded a bonus sum for each functional node. 

Almoghathawi et al., (2019) adopted an alternative measure of resilience than the 

models discussed earlier, one proposed by Henry and Emmanuel Ramirez-Marquez 

(2012) who state that resilience is the ratio of recovered performance to total lost 

performance.  In their formulation, system performance in their resilience equation is still 

quantified as a measure of slack (Almoghathawi et al., 2019).  Additionally, 

Almoghathawi et al. (2019) add another component to their objective function, a cost 

minimization function, which includes a penalty cost associated with slack, creating a 

multi-objective optimization model that seeks to minimize cost and maximize resilience 

(i.e., minimize penalty costs associated with slack and maximize system performance 

recovered).  On common factor in the models discussed in this section has been their 

reliance on a penalty cost for slack or bonus cost for node functionality, which is a 

common methodology for motivating mathematical models to repair components, for 

without an associated penalty, the cheapest solution for a cost minimization model is to 

not execute any repair functions (Almoghathawi et al., 2019; González et al., 2016; 

Moore, 2021).  A critique of this penalty cost or bonus sum approach is that the they 

require appropriate scaling so as to not dominate the restoration optimization solution 

(Moore, 2021).  To avoid the need for penalty or bonus costs, while still producing a 

model that tends towards repairing a damaged system, researchers could use competing 

objectives as Almoghathawi et al. (2019) did (Moore, 2021).  However, the method for 
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solving the multi-objective optimization problem selected by Almoghathawi et al. (2019) 

did not allow them to remove the penalty costs because their model ended up being 

totally motivated by the cost portion of their objective function, which alone, cannot tend 

towards repairing a system without the penalty motivator. 
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III.  Methodology 

This research proposes a novel, mixed-integer programming (MIP), multi-

objective network optimization model, solved using a weighted sum approach that seeks 

to maximize overall system resilience while minimizing the costs to operate and repair 

the system.  This novel model incorporates partial component (node or arc) functionality, 

proportional repair cost and resource consumption, infrastructure layer-specific work 

crews, and a consolidated commodity supply and demand formulation based on Enayaty 

Ahangar et al. (2020).  This section details the underlying model assumptions, the 

notation utilized in this research, and the mathematical formulation of the Critical 

Infrastructure System Resiliency Model (CISRM) proposed in this research. 

Assumptions 

 As with any optimization model, there are several underlying assumptions that 

must be considered when utilizing it.  CISRM is no different.  In this research, the 

underlying assumptions are: 

• A critical infrastructure system can be reduced to a network of nodes and arcs that 

can be damaged or disrupted by various events (i.e., random failures, targeted 

attacks, natural disasters) 

• Individual infrastructure layers can flow one or more services or commodities 

from supply nodes to demand nodes across a series of connected arcs 

• In this formulation, each arc is only capable of flowing a single commodity at a 

time (i.e., no multicommodity flow) 
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• All nodes have a known supply or demand for each commodity considered in the 

simulation and all arcs have a known capacity for each commodity they transport 

• The flow cost of a commodity across an arc is a known and fixed quantity 

• Nodes that supply commodities can become disabled either by being physically 

damaged or by a failure of the system to provide sufficient commodities to meet 

the demand at that node 

• Nodes and arcs can have partial functionality if damaged calculated as a 

proportion of baseline capacity as input by the user’s damage simulation 

• Partial damage to nodes does not affect the available supply or required demand 

of those nodes 

• If a damaged component is restored, it is completely restored, there are no partial 

repair or recovery of function to anything less than the baseline level of 

performance 

• No new arcs or connections can be constructed during the restoration process 

• The quantities of critical resources necessary to fully repair each component are 

known and fixed quantities 

• A work crew can only repair one component per time step 

• Actual recovery durations are not considered, if a component is selected for repair 

in a given time step, it is assumed the component will be completely restored by 

the end of that time step 
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Notation 

Table 1: Summary of CISRM notation 

Notation Description 

𝒩 Set of all nodes 

𝒜 Set of all arcs 

𝒦 Set of all infrastructure layers 

ℒ Set of all commodities 

ℛ Set of all repair resources 

𝒯 Set of all time steps 

𝒩′ Set of all damaged nodes 

𝒜′ Set of all damaged arcs 

𝑑𝑖𝑘ℓ Demand (+) / Supply (-) parameter of commodity ℓ, by node 𝑖, in layer 𝑘  

𝑢𝑖𝑗ℓ Capacity parameter of arc (𝑖, 𝑗) for commodity ℓ 

𝑐𝑖𝑗ℓ Cost parameter per unit flow of commodity ℓ across arc (𝑖, 𝑗)  

𝑛𝑓𝑖𝑟 Quantity parameter of resource 𝑟 required to repair (fix) node 𝑖 
𝑎𝑓𝑖𝑗𝑟 Quantity parameter of resource 𝑟 required to repair (fix) arc (𝑖, 𝑗) 

𝑤𝑘ℓ Work crews available to work on nodes in layer 𝑘 or arcs for commodity ℓ 

𝑛𝑣𝑖 Partial (percent) capacity parameter of node 𝑖 after disruption 

𝑎𝑣𝑖𝑗 Partial (percent) capacity parameter of arc (𝑖, 𝑗) after disruption 

𝑞𝑟 Parameter for quantity available of resource 𝑟 

𝜇𝑖 User-defined priority parameter of node 𝑖 
𝑥𝑖𝑗ℓ𝑡 Variable quantity of commodity ℓ, flowing across arc (𝑖, 𝑗), at time 𝑡 

𝑦𝑖𝑘𝑡 Variable flow state operability of node 𝑖, in layer 𝑘, at time 𝑡 

𝑛𝑧𝑖𝑡 Variable damage state of node 𝑖 and time 𝑡 

𝑎𝑧𝑖𝑗𝑡 Variable damage state of arc (𝑖, 𝑗) at time 𝑡 

 

This model notation begins with a network representation of an interdependent set 

of CISs, consisting of a set of nodes, 𝒩, a set of arcs, 𝒜, and a set of infrastructure layers 

𝒦, which are indexed as 𝑖 ∈ 𝒩, (𝑖, 𝑗) ∈ 𝒜, and 𝑘 ∈ 𝒦, respectively.  To accurately 

depict multilayer set of infrastructure systems, this research utilizes a network-of-

networks approach as the foundation of the proposed model instead of the alternative of 

using a multiplex structure.  A multiplex structure is one in which each layer describes a 
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single type of interaction or commodity and a node is reflected in each layer in which that 

node has a demand, supply, or transshipment function (Kivelä et al., 2013; Moore, 2021).  

Conversely, in a network-of-networks approach, each node is assigned to only one layer 

resulting in fewer nodes and arcs required to accurately depict system operation.  For 

example, Figure 2 shows a model representation of a two-node, mutually dependent, two-

layer system using both the multiplex approach (see panel a.), and the network-of-

networks approach (see panel b.).  In Figure 2, if node 1 is a water supply node that 

demands power, and node 2 is a power supply node that demands water, using the 

multiplex configuration would require four total nodes and four total arcs to represent this 

relationship.  In contrast, the network-of-networks approach requires only one instance of 

each node, and one arc flowing in each direction. 

 

 

Figure 2: Example multiplex (a.) vs. network-of-network (b.) representation of a simple 

power and water supply interdependency 
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Utilizing the network-of-networks approach, each node belongs to a specific 

infrastructure layer (e.g., power distribution, water distribution, transportation, etc.), 𝒦, 

and each arc transports a specific commodity (e.g., electricity, water, communication 

services, etc.), ℒ.  The model also includes a set of resources, ℛ, that will be utilized in 

the repair of damaged network components (nodes or arcs), and a set of time steps, 𝒯, 

over which a specific damage and recovery scenario can be analyzed. 

Each node, representing a specific infrastructure layer component, can supply or 

demand a quantity of each commodity considered in the model.  This parameter is 

denoted as 𝑑𝑖𝑘ℓ in which a negative value signifies a supply of commodity ℓ ∈ ℒ, at node 

𝑖 ∈ 𝒩, in layer 𝑘 ∈ 𝒦, and a positive value signifies a demand of that commodity.  In 

addition, each arc between nodes has a maximum capacity of a commodity that can 

transit across that arc at a given time.  The maximum arc capacities across arc (𝑖, 𝑗) ∈ 𝒜 

of commodity ℓ ∈ ℒ are denoted by 𝑢𝑖𝑗ℓ.  Finally, to aid in estimating the operating 

expenses of each infrastructure layer, there is a unit flow cost associated with flowing any 

commodity throughout the network.  This flow cost is denoted as 𝑐𝑖𝑗ℓ and represents the 

cost to flow one unit of commodity ℓ ∈ ℒ across arc (𝑖, 𝑗) ∈ 𝒜. 

When inputting a specific damage scenario into the model, there are a number of 

additional parameters or factors that can be included in the formulation.  First, the sets of 

damaged nodes and damaged arc that will begin the simulation with some sort of 

diminished operating capacity are annotated as 𝒩′ ⊆ 𝒩 and 𝒜′ ⊆ 𝒜.  When entering a 

component into the set of damaged nodes or arcs, the user has the option to assign a 
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parameter to the node, 𝑛𝑣𝑖, or arc, 𝑎𝑣𝑖𝑗, which allow for partial functionality (on a scale 

of 0-1 or 0% to 100%) of the given components as detailed in the constraint equations 

below.  The user can also input the available quantity or maximum resource limits of the 

critical resources, 𝑞𝑟, which can be utilized by work crews to repair damaged 

components.  Users can also set an external prioritization value for each node, 𝜇𝑖, such 

that the model will prioritize repair of and restoration of services to higher rated nodes 

first. 

When considering the repair or restoration of network components, each node or 

arc requires a known quantity of key resources (contained in set ℛ) that it would take to 

restore the node or arc to full functionality.  These quantities are denoted by the 

parameters 𝑛𝑓𝑖𝑟 and 𝑎𝑓𝑖𝑗𝑟 which are the resources required, 𝑟 ∈ ℛ, for repair of node 𝑖 ∈

𝒩′, and arc (𝑖, 𝑗) ∈ 𝒜′, respectively.  Additionally, there are a limited number of work 

crews available for each infrastructure layer 𝑘 ∈ 𝒦 or commodity ℓ ∈ ℒ, denoted by the 

parameter 𝑤𝑘ℓ. 

Finally, there are several variables present in the model that allowing for a 

number of different solutions to exist for a given scenario.  First, 𝑥𝑖𝑗ℓ𝑡 represents the 

quantity of flow of commodity ℓ ∈ ℒ, across arc (𝑖, 𝑗) ∈ 𝒜, at time 𝑡 ∈ 𝒯.  Second, 𝑦𝑖𝑘𝑡 

is a binary flow-state operability variable that takes a value of 1 if node 𝑖 ∈ 𝒩 and layer 

𝑘 ∈ 𝒦 has been supplied with enough commodities to satisfy all its demands, and 0 if at 

least one commodity has not been supplied in sufficient quantity.  The last two variables 

are 𝑛𝑧𝑖𝑡 and 𝑎𝑧𝑖𝑗𝑡 which are also binary and indicate whether a node or an arc were 
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disrupted in the damage simulation (i.e., 𝑛𝑧𝑖𝑡 or 𝑎𝑧𝑖𝑗𝑡 = 0) and available to be repaired 

by the work crews, or if they were not damaged (i.e., 𝑛𝑧𝑖𝑡 or 𝑎𝑧𝑖𝑗𝑡 = 1). 

Mathematical Model 

 The proposed model seeks to balance two conflicting objectives: system resilience 

and system cost.  These objectives are competing because an increase in resilience 

(desired) corresponds with an increase in cost (not desired).  In this research, system 

resilience, 𝜑, was defined as the number of operable nodes (i.e., nodes with 𝑦𝑖𝑘𝑡 = 1), 

multiplied by the criticality of those nodes, 𝜇𝑖, summed across all infrastructure layers 

and across time, shown in Equation 1.  This resilience metric takes into consideration 

both the damage state of given nodes and the meeting of commodity demands at those 

nodes (i.e., the node itself must be repaired and the overall system must be repaired to the 

extent required to be able to supply the required commodities to a node, in order for that 

node to be functional). 

𝜑 = ∑ ∑ ∑ 𝑦𝑖𝑘𝑡 ∗ 𝜇𝑖

𝑘∈𝒦𝑡∈𝒯𝑖∈𝒩

  (1) 

There were three components that added to the total system cost considered in this 

research, commodity flow cost, node repair cost, and arc repair cost, with total cost being 

the summation of the three, across all layers, commodities, and time steps.  In this 

formulation, cost was calculated as the sum of the money required to repair the damaged 

nodes and arcs, Equation 2, with “money” being considered as one of the critical 

resources listed in the set, ℛ. 
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𝒞 = ∑ (∑ ∑ 𝑥𝑖𝑗ℓ𝑡 ∗ 𝑐𝑖𝑗ℓ

(𝑖,𝑗)∈𝒜ℓ∈ℒ

+ ∑ 𝑛𝑧𝑖𝑡 ∗ 𝑛𝑓𝑖′𝑚𝑜𝑛𝑒𝑦′

𝑖∈𝒩′𝑡∈𝒯

+ ∑ 𝑎𝑧𝑖𝑗𝑡 ∗ 𝑎𝑓𝑖𝑗′𝑚𝑜𝑛𝑒𝑦′

(𝑖,𝑗)∈𝒜′

) 

(2) 

The objective function was solved using a weighted-sum method to balance the 

competing objectives of maximizing system resilience, 𝜑, while minimizing total cost, 𝒞.  

Since resilience is to be maximized and cost is to be minimized, 𝒞 is subtracted from 𝜑 to 

motivate the model to increase 𝜑 and decrease 𝒞.  To do this, a weight, 𝜔, is set by the 

user which allows for evaluating numerous solutions based on varying degrees of 

prioritization between the objectives (e.g., if maximum resilience is desired, 𝜔 is set to 1 

or if a maximum resilience and minimum cost are valued equally, 𝜔 would be set to 0.5).  

The user may also input a scaling factor, 𝜆, to compensate for the potential differences in 

order of magnitude between 𝜑 and 𝒞.  This yields an overall objective function given in 

Equation 3. 

𝑀𝐴𝑋 (𝜔 ∗ 𝜑 −
1 − 𝜔

𝜆
∗ 𝒞) (3) 

As mentioned previously, the model is subject to a number of categories of 

constraints that limit the potential solutions and govern the functioning of the system.  

The first constraint listed below is the flow-balance constraint, Equation 4, adapted from 

Enayaty Ahangar et al. (2020) which allows for a more concise formulation while still 

maintaining the ability to simulate many interdependent relationships. 
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∑ 𝑥𝑖𝑗ℓ𝑡 − ∑ 𝑥𝑖𝑗ℓ𝑡 ≤ −𝑑𝑖𝑘ℓ ∗ 𝑦𝑖𝑘𝑡

(𝑗,𝑖)∈𝒜(𝑖,𝑗)∈𝒜

, ∀ 𝑖 ∈ 𝒩, 𝑘 ∈ 𝒦, ℓ ∈ ℒ, 𝑡 ∈ 𝒯 (4) 

The following constraints govern the quantities of the commodities that can flow 

from one node to another based on the capacity and damage state of the arc itself 

(Equation 5), the damage state of the origin node (Equation 6), and the damage state of 

the destination node (Equation 7), respectively.  The partial functionality capabilities of 

CISRM are based on the work of Almoghathawi and Barker (2019).  The fundamental 

theory behind the constraints in Equations 5-7 is that if a component is going to have a 

partial functionality (i.e., 𝑛𝑣𝑖 or 𝑎𝑣𝑖𝑗 < 1), that component will be in the set of damaged 

components and have a damage state of 0 (i.e., 𝑛𝑧𝑖𝑡 or 𝑎𝑧𝑖𝑗𝑡 = 0), indicating it can be 

repaired by the available work crews. 

𝑥𝑖𝑗ℓ𝑡 ≤ 𝑢𝑖𝑗ℓ ∗ ((1 − 𝑎𝑧𝑖𝑗𝑡) ∗ 𝑎𝑣𝑖𝑗 + 𝑎𝑧𝑖𝑗𝑡) , ∀ (𝑖, 𝑗) ∈ 𝒜, ℓ ∈ ℒ, 𝑡 ∈ 𝒯 (5) 

𝑥𝑖𝑗ℓ𝑡 ≤ 𝑢𝑖𝑗ℓ ∗ ((1 − 𝑛𝑧𝑖𝑡) ∗ 𝑛𝑣𝑖 + 𝑛𝑧𝑖𝑡), ∀ 𝑖 ∈ 𝒩, (𝑖, 𝑗) ∈ 𝒜, ℓ ∈ ℒ, 𝑡 ∈ 𝒯 (6) 

𝑥𝑖𝑗ℓ𝑡 ≤ 𝑢𝑖𝑗ℓ ∗ ((1 − 𝑛𝑧𝑗𝑡) ∗ 𝑛𝑣𝑗 + 𝑛𝑧𝑗𝑡) , ∀ 𝑗 ∈ 𝒩, (𝑖, 𝑗) ∈ 𝒜, ℓ ∈ ℒ, 𝑡 ∈ 𝒯 (7) 

The next set of constraints govern the repair and restoration of damaged 

components.  The first constraint in this subset restricts the number of components that 

can be repaired per time step to the number of work crews assigned to that layer, 

Equation 8.  As mentioned earlier, work crews can be assigned to both an infrastructure 

layer, 𝑘 ∈ 𝒦, and a commodity layer, ℓ ∈ ℒ.  This is because in this formulation, nodes 

are associated with a specific infrastructure layer while arcs are associated with the 

commodity or commodities that flow across them, and work crews should be able to 
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repair either nodes or arcs within a given system (i.e., if 𝑤𝑘ℓ = 𝑤(𝑝𝑜𝑤𝑒𝑟)(𝑒𝑙𝑒𝑐𝑡𝑟𝑖𝑐𝑖𝑡𝑦) = 2, 

each of the two work crews could repair a node associated with the power distribution 

layer or an arc associated with the flow of electricity). 

∑ 𝑛𝑧𝑖𝑡 − 𝑛𝑧𝑖(𝑡−1)

𝑖∈𝒩′

+ ∑ 𝑎𝑧𝑖𝑗𝑡 − 𝑎𝑧𝑖𝑗(𝑡−1)

(𝑖,𝑗)∈𝒜′

≤ 𝑤𝑘ℓ, ∀ 𝑘 ∈ 𝒦, ℓ ∈ ℒ, 𝑡 ∈ 𝒯 (8) 

The next constraint, Equation 9, restricts the number of components that can be 

repaired based on the number of available critical resources by summing the number of 

critical resources that would be consumed by repairing a given component.  This 

constraint also allows for proportional resource consumption to be factored in based on 

the partial damage or capacity of components input by the user’s damage scenario. 

∑ ( ∑ 𝑛𝑓𝑖𝑟 ∗ (1 − 𝑛𝑣𝑖) ∗ (𝑛𝑧𝑖𝑡 − 𝑛𝑧𝑖(𝑡−1))

𝑖∈𝒩′

+ ∑ 𝑎𝑓𝑖𝑗𝑟 ∗ (1 − 𝑎𝑣𝑖𝑗)
(𝑖,𝑗)∈𝒜′𝑡∈𝒯

∗  (𝑎𝑧𝑖𝑗𝑡 − 𝑎𝑧𝑖𝑗(𝑡−1))) ≤ 𝑞𝑟 , ∀ 𝑟 ∈ ℛ 

(9) 

 

The following two constraints simply maintain the restored status of damaged 

nodes, Equation 10, and arcs, Equation 11, over the duration of the damage scenario. 

𝑛𝑧𝑖𝑡 − 𝑛𝑧𝑖(𝑡−1) ≥ 0, ∀ 𝑖 ∈ 𝒩′, 𝑡 ∈ 𝒯 (10) 

𝑎𝑧𝑖𝑗𝑡 − 𝑎𝑧𝑖𝑗(𝑡−1) ≥ 0, ∀ (𝑖, 𝑗) ∈ 𝒜′, 𝑡 ∈ 𝒯 (11) 
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 The last constraints listed below are non-negativity constraints and binary 

constraints restricting the signs and values of their respective parameters or variables.  

Equation 12 sets the non-negativity of commodity flow, and Equations 13, 14, and 15 set 

the binary limitations for node flow state, node damage state, and arc damage state, 

respectively. 

𝑥𝑖𝑗ℓ𝑡 ≥ 0, ∀ (𝑖, 𝑗) ∈ 𝒜, ℓ ∈ ℒ, 𝑡 ∈ 𝒯 (12) 

𝑦𝑖𝑘𝑡 ∈ {0,1}, ∀ 𝑖 ∈ 𝒩, 𝑘 ∈ 𝒦, 𝑡 ∈ 𝒯 (13) 

𝑛𝑧𝑖𝑡 ∈ {0,1}, ∀ 𝑖 ∈ 𝒩, 𝑡 ∈ 𝒯 (14) 

𝑎𝑧𝑖𝑗𝑡 ∈ {0,1}, ∀ (𝑖, 𝑗) ∈ 𝒜, 𝑘 ∈ 𝒦, 𝑡 ∈ 𝒯 (15) 
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IV.  Results 

Illustrative Example 

A test network was utilized to demonstrate the functionality of CISRM and its 

ability to evaluate the performance and optimal restoration of an interdependent 

infrastructure network.  The test network is a two-layer, 18-node network, consisting of 

nine nodes in the power distribution layer, and nine nodes in the water distribution layer.  

The network itself was adapted from the work of Almoghathawi and Barker (2019) and 

expanded to include additional parameters such as flow cost, arc capacities, supply and 

demand quantities, and component repair resource requirements, which are detailed in 

Appendix 1.  This section further describes the test network, the various damage 

simulations the network was subjected to and CISRM was used to evaluate, and displays 

the results. 
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Test Network 

 

Figure 3: Test network used for evaluation of CISRM capabilities 

 

The test network utilized in this research was a two-layer, interdependent 

infrastructure network, consisting of nine power distribution nodes, nine water 

distribution nodes, and various intra- and inter-layer arcs completing the network, shown 

in Figure 3.  There were three power supply nodes (nodes 1, 2, and 3) and three water 

supply nodes (nodes 10, 11, and 12).  The other six nodes from each layer were grouped 

together to simulate a residential area with both a power demand and a water demand.  

Additionally, interdependencies exist between the water distribution layer and the power 

supply nodes, which require water to generate and supply electricity, and the power 

distribution layer and the water supply nodes, which require electricity to supply water to 

the system. 
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Damage Scenarios 

 Previous research identifies three common sources of potential disruptions for 

CISs: random failures, malevolent attacks, and natural disasters (Alkhaleel et al., 2022; 

Almoghathawi et al., 2019; Ouyang, 2017).  The damage scenarios selected for this 

research were modeled after these three potential sources and adapted to take into 

consideration the small size of the test network.  The first damage scenario utilized in this 

illustrative example was a total failure scenario in which all components, nodes and arcs, 

were damaged and at 0% functionality.  In this scenario, the weight, 𝜔, was set at 1, to 

maximize system resilience in recovery.  The second damage scenario began with a fully 

functional and fully connected network and looked at degradation in system performance 

as one component in each layer was damaged sequentially.  This damage pattern mimics 

some behavior of malevolent attacks.  The final damage scenario was a random failure 

scenario, similar to a natural disaster, in which a random number between zero and one 

was generated for each component, and if that number was less than 0.5, then that 

component was said to be damaged with a percent operability equal to that randomly 

generated number. 

Simulation Results 

 All tests and simulations conducted as part of this research were executed on a 

laptop computer using an Intel i5-8250U CPU @ 1.60 GHz with 8.00 GB RAM.  This 

research used GAMS Studio software, specifically GAMS Studio 1.8.2 64-bit, and relied 

on the IBM ILOG CPLEX 20.1 solver to execute the mixed-integer programming 
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CISRM model.  The GAMS code generated as part of this research is included in its 

entirety in Appendix 2.  Although computational efficiency was not the focus of this 

research, it should be noted that the longest computational time associated with solving 

any of the optimization problems discussed was 35 minutes. 

 Before CISRM could be applied to the desired damage scenarios, certain user-

defined values needed to be determined, mainly the appropriate weighting factors (𝜔) and 

scaling factors (𝜆) necessary to generate the best set of feasible solutions.  No external 

prioritizations, 𝜇, were assigned to any of the nodes during any of these simulations (i.e., 

𝜇𝑖 = 1, ∀ 𝑖 ∈ 𝒩).  Both 𝜔 and 𝜆 can have a significant impact on the results of the model 

so a sensitivity analysis was done as part of this research to determine the values that 

worked best for the input test network data.  Given its presence in the resilience-focused 

objective function, if 𝜇 values were assigned to components, they would also impact the 

analysis and should be included in any sensitivity analysis.  If CISRM were applied to an 

alternate network, it is likely a similar analysis would have to be done until a range of 

acceptable input values could be determined for which precalculated values of 𝜔 and 𝜆 

would be sufficient.  For this analysis various combinations of ranges for 𝜔 and values of 

𝜆 were input into the model and used to generate Pareto fronts, which are graphical 

representations of the optimal solutions to multi-objective optimization problems.  The 

best combination of values for 𝜔 and 𝜆 would yield a diverse set of optimal solutions, 

indicated by the number and spacing of the solutions along the Pareto front.  Appendix 3 

contains the total set of results generated during the sensitivity analysis, but for this 
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research, 𝜔 was constrained to the range of 0-1 while 𝜆 was set to 5000.  The rest of this 

section describes the actual results generated from the damage scenarios. 

Figure 4 shows the prioritization of the components to repair in both the power 

and water layer of the test network based on CISRM recommendations, columns 1 and 2, 

and a recommendation based on a network topological prioritization, columns 3 and 4.  

Figure 5 is a partial resilience curve showing the trajectory of system recovery with the x-

axis being time steps in the model and the y-axis being system performance measured as 

a percentage of functional nodes compared to the baseline (i.e., nodes must be both 

physically repaired and be supplied with a sufficient quantity of commodities to meet 

their demands).  System recovery in Figure 5 is shown with components being repaired 

per the recommendations of the CISRM (i.e., “CISRM” lines), and based on the 

topological recommendations (i.e., “topology” lines).  In addition to the CISRM vs. 

topological comparison, Figure 5 also shows recovery trajectory when considering only 

one work crew per infrastructure layer (i.e., “1 WC” lines) and two work crews per 

infrastructure layer (i.e., “2 WC” lines).  Figure 6 shows the total cost across the recovery 

horizon for each of the four scenarios stated earlier: 1 work crew – CISRM model 

prioritization, 2 work crew – CISRM model prioritization, 1 work crew – topological 

prioritization, and 2 work crew – topological prioritization. 
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Figure 4: Table showing the order of top 15 components to be repaired based on CISRM 

prioritization and topological-based recommendations for the total failure scenario 

 

 

Figure 5: Partial resilience curve showing system recovery trajectory for the total failure 

scenario in response to four different repair prioritization scenarios 
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Figure 6: Repair costs for the total failure scenario across the time horizon based on four 

different repair prioritization scenarios 

 

 Figures 7-9 pertain to the second damage scenario, the targeted attack.  As 

mentioned earlier, the network in this scenario began with all components connected as 

shown in Figure 3 and operating at 100% functionality.  One component was removed 

from each network layer (i.e., one power arc or node and one water arc or node) in 

succession and the total number of components removed from each layer is shown on the 

horizontal axis of Figures 7-9.  The components were removed in the same order or 

prioritization as shown in Figure 4 with the top component being removed first and then 

moving down the list.  Figure 7 shows total system power flow as a percentage of the 

baseline level as components are successively removed from each infrastructure layer.  
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Figure 8 shows total system water flow as a percentage of baseline as system components 

are removed as described above.  Finally, Figure 9 shows overall system performance as 

measured by the percentage of functional nodes compared to the baseline as components 

are targeted and removed from the system. 

 

Figure 7: Total system power flow as a percentage of baseline (y-axis) as an increasing 

number of components are removed from both infrastructure layers (x-axis) 
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Figure 8: Total system water flow as a percentage of baseline (y-axis) as an increasing 

number of components are removed from both infrastructure layers (x-axis) 

 

 

Figure 9: Overall system performance measured as a percentage of functional nodes (y-

axis) as an increasing number of components are disabled in both of the interdependent 

infrastructure layers (x-axis) 



37 

 

 

 

 Figure 10 shows a table of damaged components and their percent of baseline 

functionality as generated using the random failure scenario procedure noted above.  For 

example, the random number generated for component “Node 1” was 0.3 which was 

under the 0.5 threshold used for determining whether or not a component was damaged.  

Therefore, “Node 1” was said to be operating at 30% of its baseline capacity.  These 

damaged components were then input into the CISRM model which then prioritized 

component repair based on several weighting factors (i.e., values of 𝜔 in Equation 3).  

Figures 11 and 12 show system performance as a percentage of functional nodes and total 

costs, respectively, as the total system is repaired.  This scenario only utilized one work 

crew for each infrastructure layer (i.e., a maximum of one component could be repaired 

from each layer at each time step).  The three values of 𝜔 used in this scenario were 0.3, 

0.45, and 0.9.  As shown in Equation 3, as 𝜔 increases, so does the emphasis on system 

resilience as compared to total costs. 

 

Figure 10: Table showing damaged components and their percent of baseline 

functionality used in the random failure damage scenario 
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Figure 11: Partial resilience curve showing system recovery trajectory for the random 

failure scenario using three different 𝜔 values in the CISRM 

 

 

Figure 12: Total costs over time for the three random failure recovery scenarios described 

above and shown in Figure 10 
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V.  Discussion 

This section discusses the results of the illustrative example described earlier and 

how they demonstrate the functionality of CISRM.  This section follows the layout of the 

previous section by first discussing the total failure scenario, followed by the targeted 

attack scenario, and finishes with a discussion of the random failure scenario. 

Total Failure Scenario 

 From the total failure scenario evaluated in Figures 4-6, it can be seen that the 

CISRM proposed a more optimal recovery than the alternative based solely on 

betweenness centrality.  Figure 4 shows the order in which the first 15 components in 

each layer were repaired based on the CISRM model and based on network topology.  

Due to the notional nature of the test network, all components (18 nodes and 34 arcs) 

were required to achieve 100% resiliency meaning that a one work crew per 

infrastructure layer scenario would require 27 time steps to complete total reconstruction 

of the network.  Of note is the fact that CISRM, under both the one and two work crew 

scenarios repaired the same components early in the recovery.  The repaired components 

at each time step were recorded after running CISRM and used to generate the 

prioritization shown in columns one and two of Figure 4.  The topological metric used in 

this research was betweenness centrality, which is a measure of the number of shortest 

paths between all nodes that flow through a specific node or arc (Dunn et al., 2013).  

Betweenness centrality provided a consistent topological metric that could be applied to 

both nodes and arcs as opposed to other topological metrics such as degree which would 
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just prioritize nodes.  Betweenness centrality was calculated for the network as a whole, 

as shown in Figure 3, and the values were separated into their respective layers to 

generate the prioritizations shown in columns three and four of Figure 4.  Complete 

betweenness centrality values are included in the test network data provided in Appendix 

1.  In both the one work crew and two work crew scenarios, CISRM achieved a higher 

level of resilience in fewer time steps than the topological prioritization.  As shown in 

Figure 5, in the two-work crew scenario, both CISRM and the topological method 

achieved 100% system performance at 12 time steps and 13 time steps, respectively.  

However, the first fully functional node (i.e., repaired and receiving sufficient commodity 

supply) appears much sooner with CISRM than with the topological approach, the second 

time step as opposed to the seventh.  Likewise, in the one work crew scenario, CISRM 

achieves its first functional node at the fourth time step whereas the topological approach 

does not achieve a functional node until time step 13.  This shows that using CISRM to 

prioritize repairs leads to a more resilient system, measured as cumulative system 

performance over the time horizon. 

Figure 6 shows the total costs incurred in each scenario from both system 

operation and recovery.  This CISRM application had an 𝜔 value of 1 meaning it would 

simply try to optimize system resilience with no regard for minimizing total costs.  

Additionally, since both the two-work crew CISRM and topological approaches achieved 

100% resilience, their total costs are similar because they eventually repaired all the same 

components and repair costs remained constant throughout.  However, the two-work 
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crew – CISRM approach has a slightly higher total cost than the two work crew – 

topological approach because of increased level of system functionality achieved early on 

and the associated increased flow costs.  In general, flows cost in this particular example 

were drastically overshadowed by the repair costs and did not significantly influence 

these results. 

From the total failure scenario, it can be seen that the CISRM is significantly 

more efficient at recovering a damaged interdependent infrastructure system than 

betweenness centrality.  This is because of the interdependent nature of the system and 

the inability of the betweenness centrality metric to distinguish between water nodes and 

power nodes and water arcs and power arcs.  This inability results in a failure to 

effectively capture system performance and functionality as measured by the delivery of 

specific commodities to their required destinations.  On the other hand, CISRM provides 

the most efficient recovery prioritization based on system performance and functionality 

and lays out the bare minimum needed to have a fully connected and operational 

network.  There were additional components that were not prioritized for repair by 

CISRM because they were redundant and did not offer additional performance 

enhancements.  This scenario further demonstrates the capabilities of CISRM to project 

recovery trajectories using multiple work crew scenarios.  However, as the model is 

currently configured, it does not capture important work crew considerations such as the 

cost to hire, train, and equip additional work crews which would need to be considered in 

a cost optimization scenario. 
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Targeted Attack Scenario 

 The total failure scenario discussed earlier sought to identify the critical 

components that needed to be repaired in order to reconstruct a fully disabled system.  

The targeted attack scenario sought to also identify critical components, but takes an 

alternative approach beginning with a fully connected and functional system, and 

removing individual components in succession and evaluating the degradation in service.  

The same prioritization schemes from Figure 4 were used in this scenario, but instead of 

being repaired, the components were removed from the system starting from the top and 

moving down.  The idea being that, the components identified for repair first, by both 

CISRM and by topology, were the most critical for system operation, and disrupting 

those components first would have the greatest impact in overall system degradation. 

 Figure 7 shows how the power flow through the whole system drops as 

components are removed from each layer of the infrastructure.  It shows that, by 

removing the components based on the topological prioritization, only three components 

need to be removed from each network to cause a total system failure resulting in 0% 

power flow.  Conversely, when targeting components based on the CISRM prioritization, 

eight components needed to be removed from both layers to cause a total cessation of 

power flow.  Likewise, Figure 8 shows the same results but from the perspective of total 

water flow through the network.  Finally, Figure 9 shows total system performance 

measured as percentage of operational nodes as compared to the baseline.  Figure 9 

reveals that by removing three components in order of the topological prioritization, and 
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eight components based on the CISRM prioritization, all the nodes in the network were 

rendered nonfunctional.  By looking at the actual degradation curve in Figure 9, it can be 

seen that when only the top two components are removed, the system is still able to 

maintain 58% functionality when looking at the topological targeting, and 76% 

functionality when looking at the CISRM-based targeting. 

 Based on the results in Figure 7-9, targeted attacks on this network appear to be 

more effective when based on topological metrics than when based on the CISRM repair 

prioritization.  This is likely a function of the small size of the test network and the 

outsized effect that removing a single node can have on overall connectivity.  However, it 

can be useful in identifying potential candidates for hardening or redundancies in order to 

mitigate the potential impacts to the system from component failures.  Conversely, these 

results could also inform adversaries that targeting interdependent infrastructure systems 

based on topological metrics yields a faster degradation in service than alternative 

targeting prioritizations. 

Random Failure Scenario 

 The random failure scenario depicts a probabilistic disruption event such as a 

natural disaster.  Figure 10 displays the results of the random number assignment process 

showing which network components were considered damaged and to what extent they 

were damaged.  This scenario shows a critical capability of CISRM to incorporate partial 

component functionality and proportional resource consumption in their repair.  

Additionally, this failure scenario shows how the recovery results can vary when 
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different weights are applied to the objective equation, changing the emphasis between 

resilience maximization and cost minimization.   

 Figure 11 shows three partial resilience curves of three different 𝜔 values.  The 

lower values of 𝜔 correspond with a lower emphasis on maximizing system performance.  

This is demonstrated in the fact that the 𝜔 = 0.3 line only reaches about 45% system 

performance while the 𝜔 = 0.9 line reaches 100% system performance.  Furthermore, 

Figure 12 shows the cost side of the equation for each of the three 𝜔 values, but with the 

meaning reversed where a lower 𝜔 puts a higher emphasis on minimizing cost.  This is 

clearly demonstrated in Figure 12 where the 𝜔 = 0.3 line has the lowest overall 

expenditures while the 𝜔 = 0.9 line has the highest. 

 The three different scenarios depicted in Figures 11 and 12 can be used in a 

tradeoff analysis by infrastructure owners to decide what level of system performance, 

and by extension, overall resilience, and cost they are willing to or able to attain 

following a disruption.  Of particular interest are the large jumps that occur between 

resilience and cost.  For example, in Figures 11 and 12, it can be seen that when 𝜔 =

0.45, a system performance of 94% can be attained at a substantially lower cost than it 

takes to get to a system performance of 100%. 

Air Force Installation Use Case 

 This section will detail a potential use case for United States Air Force (USAF) 

Installations.  One of the major challenges associated with application of flow-based 

network optimization models such as CISRM and the others discussed earlier is 
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availability of reliable, real-world data (Almoghathawi & Barker, 2019).  This is due to 

the criticality and sensitivity of much of the infrastructure systems being evaluated and 

the multiple system owners that would have to cooperate to generate a cohesive 

interdependent infrastructure network model.  Additionally, in a disruptive event 

unfolding in real-time, restoration optimization model implementation is often hampered 

by the information sharing process between different CIS owners (Sharkey et al., 2015).  

As such, a large portion of the research and application of these models consists of 

evaluating historical post-disaster restoration efforts (der Sarkissian et al., 2022; Poulin & 

Kane, 2021; Sarker & Lester, 2019; Sharkey et al., 2016).  This research proposes an 

alternative use case, Department of Defense installations, specifically USAF Installations. 

 USAF installations are the power projection platforms of that branch of the 

military and rely heaving on the underlying infrastructure for mission generation 

(Department of the Air Force, 2019).  USAF civil engineering squadrons are responsible 

for operations and maintenance of all infrastructure systems within the installation fence 

line and as such, would not suffer from the same lack of oversight and cooperation that 

proves so challenging in many civilian application of resiliency models.  A single 

installation could provide reliable and accurate data to construct an interdependent 

infrastructure network model consisting of several infrastructure layers supporting a 

mission generation layer.  Under this construct, critical facilities for mission could be 

identified and their infrastructure demands quantified and isolated to reduce the 

computational burden of modeling the entire set of infrastructure layers.  Mission owners 
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and facility operators could then be consulted to prioritize demand criticalities and 

damage scenarios could be run to evaluate potential impacts to mission from 

infrastructure disruptions. 
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VI. Conclusion 

 Being able to adequately model CIS performance in response to disruptions is 

critical to identifying system interdependencies and vulnerabilities, and improving 

recovery planning and execution.  Network flow-based optimization models are one of 

the most effective tools in this area of research because they are able to simulate system 

performance metrics such as quantities of commodities being supplied that are not able to 

be captured using other modeling approaches such as economic models or network 

topological models.  Projected system response to disruptions can then be used to inform 

investment decisions of CIS owners who, in accordance with high-level governmental 

directives, are attempting to improve overall system resilience, and mitigate the 

economic, security, and safety impacts of CIS disruptions.  

 This research proposed a novel network flow-based infrastructure model and 

illustrated its potential applications for disaster mitigation and recovery optimization 

using a test network.  The proposed model allows for partial functionality of system 

components and variable levels of critical recovery resources which have heretofore not 

been combined in a cohesive model.  The test network used in this research was 

constructed to simulate a series of interconnected residential areas with electric power 

and water demands, and the associated multi-layer infrastructure systems to support these 

demands.  The test network was subjected to a number of disruption scenarios including a 

total failure scenario in which every component of the system was rendered inoperable, a 

targeted attack in which system performance was monitored in response to disruption of 
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the most critical system components, and a random failure scenario in which components 

were disrupted at random to simulate a natural disaster. 

 The total failure scenario revealed the CISRM model’s superiority in prioritizing 

component recovery by more rapidly bringing services online and meeting consumer 

demand when compared to a topological-based prioritization.  The targeted attack 

scenario revealed that removing components based on their topology (i.e., betweenness 

centrality in this research), was more effective at degrading system performance than the 

criticality determined by the CISRM model.  This finding could be a result of the small 

size of the test network or simply an illustration of the ease of disruption compared to the 

more complicated system restoration.  The random failure scenario displayed the 

potential functionality of the CISRM model as a decision-making tool by illustrating the 

impacts of increasing or decreasing the emphasis on system resilience as opposed to total 

system costs.  By providing a visual showing the different levels of performance that can 

be achieved at different expenditures, the CISRM model could be an invaluable tool for 

CIS owners and operators. 

Limitations 

 As mentioned earlier, constructing any model will always require tradeoffs 

between accuracy and intricacy, and complexity and computational cost.  Therefore, no 

model is without its limitations.  A limitation of the CISRM model in its current 

formulation is its inability to adequately capture partial performance of supply nodes.  

While partial functionality of a node will limit the capacity of the outgoing arcs, it does 
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not actually reduce the available supply of commodity from the node.  Additionally, the 

current formulation only considers three of the five types of operational 

interdependencies identified by Lee et al. (2007).  Clearly, the research has identified 

several other types of interdependencies that could be included in a future formulation to 

create a more complete model.  Furthermore, CISRM does not include a real measure of 

time other than as a critical resource that could be limited in a recovery scenario.  

Therefore, while it is useful in prioritizing recovery efforts, the current formulation lacks 

functionality as a scheduling model for recovery activities.  A final limitation comes from 

the lack of real-world infrastructure data available for research.  All tests performed in 

this research to demonstrate the capabilities of CISRM were done with notional data 

created for a test network, and thus CISRM has not been tested on a real-world network. 

Future Research 

 In addition to addressing the limitations mentioned earlier, future research 

involving the CISRM model could be done evaluating the impacts of changing resource 

levels on recovery prioritizations.  CISRM allows for time and money to be included as 

limiting resources and evaluating recovery options given a limited budget or time 

requirement could be useful for future CIS recovery plans.  Finally, the computational 

cost of utilizing CISRM on a large-scale network could be significantly reduced if a 

future formulation were constructed in an iterative loop configuration as described in 

González et al. (2016).  This would greatly reduce the time to successfully run a 

simulation but would potentially lead to a non-optimal global solution.  However, this 
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tradeoff, as described in González et al. (2016), would more accurately depict real-world 

operational decisions in which the best decisions are made with the currently available 

information, and adjusted as new information or constraints become available. 
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Appendix 1 

Appendix 1 is associated Microsoft Excel file titled “Appendix 1 – CISRM Test 

Network Data”.  This Excel file consists of two tabs labeled “Nodes” and “Arcs” which 

contain the data and parameters developed for and used in this research.  The column 

details from each tab are detailed below in Tables 2 (“Nodes”) and 3 (“Arcs”).  

Additionally, each tab contains relevant cost data used to estimate repair costs adapted 

from Moore (2021).  Distances used in arc calculations are notional and were generated 

based on the network configuration provided in the “Arcs” tab. 

 

Table 2: Node tab column descriptions 

Column Description 

A Node number 

B Node layer 

C Node-layer combination 

D Component description 

E Node power demand (-) or supply (+) 

F Units of power demand or supply 

G Node water demand (-) or supply (+) 

H Units of water demand or supply 

I Total node repair cost in ($ K) 

J Total node repair time (units undefined) 

K Number of utility poles required to repair node 

L Quantity of power line required to repair node 

M Quantity of thick pipe required to repair node 

N Quantity of thin pipe required to repair node 

O Number of generators required to repair node 

P Number of pumps required to repair node 

Q Total node degree  

R Node out degree 

S Node in degree 

T Node betweenness centrality 
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Table 3: Arc tab column descriptions 

Column Description 

A Arc origin node 

B Arc destination node 

C Origin-Destination designation 

D Arc commodity 

E Arc-Commodity combination 

F Notional arc length 

G Arc power capacity 

H Arc water capacity 

I Arc flow cost for power 

J Arc flow cost for water 

K Total arc repair cost 

L Total arc repair time 

M Number of utility poles required to repair arc 

N Quantity of power line required to repair arc 

O Quantity of thick pipe required to repair arc 

P Quantity of thin pipe required to repair arc 

Q Number of generators required to repair arc 

R Number of pumps required to repair arc 

S Arc betweenness centrality 
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Appendix 2 

Appendix 2 is an associated .txt file that contains the GAMS code generated as 

part of this research.  The code is commented to provide an explanation of the variables 

and equations that do not bear the exact same notation as contained in this document. 
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Appendix 3 

 Appendix 3 is associated Microsoft Excel file titled “Appendix 3 – Test Network 

Scaling and Weighting Sensitivity Analysis”.  The file consists of three rows and four 

columns of graphs which show the Pareto fronts for various combinations of weighting 

(𝜔) and scaling (𝜆) factors.  A loop was set up in GAMS to run a 10-step, total failure 

scenario and record the value for total system resilience and total system cost which are 

displayed on the y-axis and x-axis of the graphs respectively.  The loop ran through each 

range of 𝜔 values at the indicated intervals to generate as many optimal solutions as 

could be found with each 𝜔 and 𝜆 combination.  The top row shows Pareto fronts for 𝜔 

ranging from 0-10 by 0.5 step intervals.  The second row shown 𝜔 ranging from 0-1 with 

0.05 step intervals.  The third row shows 𝜔 ranging from 0-100 with 5 step intervals.  

With respect to the columns, the first column shows 𝜆 set at 500, the second columns has 

𝜆 set at 1000, the third at 5000, and the fourth at 10000.  This analysis was determined to 

be sufficient because the number and spacing of the solutions diminished as the values 

for each variable got higher or lower yielding the selected values of 0-1 for 𝜔 and 5000 

for 𝜆. 
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