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Abstract

An algorithm was created to optimize trajectories of hypersonic glide vehicles with

selected cost functions by applying the process of continuation to direct orthogo-

nal collocation methods. The trajectory was optimized to maximize the range of

launch position given a fixed terminal location. The process of continuation was used

to address the complexity of the model whereby less complex solutions were used

to seed increasing complex modeling in an iterative fashion. The hypersonic glide

vehicle system dynamics were modeled with three-dimensional, three degree of free-

dom equations of motion assuming no thrust and a non-rotating Earth for the states

defined as vehicle radial position, latitude, longitude, speed, flight path angle, and

heading angle. The control for the system was placed on the bank angle of the vehicle.

Three aerothermodynamic models were compared when input as path constraints to

calculate the stagnation point heating rate at the nose as well as integrated for heat

load. Use of the continuation method enabled rapid generation of converged opti-

mized trajectories. Differences noted between iterations of the continuation process

showed the evolution of vehicle trajectories based on the problem formulations. The

continuation method was demonstrated as an effective tool for optimization. Analysis

of the aerothermodynamic models through continuation revealed the coupling of var-

ious systems within the hypersonic model that affected how the algorithm converged

upon a solution to meet the given maximum heat rate limit. Each aerothermody-

namic model rendered a different optimal trajectory with the Sutton Graves model

producing the most conservative, highest stagnation point heat rate and heat load

estimates and the Galman model predicting the lowest values.

iv
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DIRECT METHODS FOR COMPARISON OF AEROTHERMODYNAMIC

MODEL EFFECTS ON HYPERSONIC TRAJECTORY OPTIMIZATION BY

THE CONTINUATION PROCESS

I. Introduction

1.1 Motivation

The beginning of the 1960s was the beginning of exploration into the hypersonic

realm. Many “firsts” were accomplished during this time period, such as the first

human to travel at hypersonic speeds in a space capsule and the first human to fly

at a “mile-per-minute” in an aircraft, the X-15 [1]. These firsts demonstrated the

applications of new aerodynamic theories and technologies. The hypersonic field is

upon another period of innovation with more advanced technologies at researchers’

disposal to help solve complicated hypersonic problems.

Hypersonic systems, vehicles that travel faster than Mach 5, are being studied

to aid in the development of operational systems in the near-future. The history

of hypersonic research has ebbed and flowed with national interests and funding.

During the Cold War, it became abundantly clear to the world how important it was

to possess the technological advantage. Nations were focused on funding missile and

nuclear research. Additionally, the 1960s was also the age of the space race. While

funding may have slowed for changing priorities in the past, research in hypersonic

weapons never stagnated completely as it has been a part of the conventional prompt

global strike (CPGS) program since the early 2000s [2]. The prompt global strike

mission was aimed at providing “the United States with the ability to strike targets
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anywhere on Earth with conventional weapons in as little as an hour, without relying

on forward-based forces” [3]. Among the capabilities considered in achieving this

objective were hypersonic systems.

In today’s strategic environment, there is an ever-increasing need for the develop-

ment of simulation programs to accurately model the maneuverability of high-speed

vehicles [2]. Globally, hypersonic vehicle programs have become active in multiple

nations. The United States has focused its research efforts on developing hypersonic

systems that would enable “responsive, long-range, strike options against distant, de-

fended, and/or time-critical threats [such as road-mobile missiles] when other forces

are unavailable, denied access, or not preferred,” as stated by the former Vice Chair-

man of the Joint Chiefs of Staff and former Commander of U.S. Strategic Command

General John Hyten [2]. Due to the complexity of hypersonic systems and the require-

ment for testing, accurate and robust modeling is necessary for system development.

Hypersonic vehicles fall into three general classes: ballistic reentry vehicles, hy-

personic glide vehicles (HGV), and hypersonic cruise vehicles (HCV). The difference

in trajectories can be observed in Figure 1. Ballistic missiles follow a parabolic tra-

jectory, with minimal control and will operate exo-atmospherically, while glide and

cruise vehicles operate endo-atmospherically for the majority of their trajectory. Glide

vehicles do not utilize propulsion after launch while cruise vehicles engage in powered

flight.

2



Figure 1. Notional trajectories of a ballistic missile, hypersonic glide vehicle, and
hypersonic cruise missile [4].

Endo-atmopsheric flight provides an advantage for hypersonic glide and cruise

vehicles due to the ability to maneuver during flight. The maneuverability allows

for a broader range of applications. An endo-atmospheric flight path may result in

delayed detection from a terrestrial based radar due to a limiting line of sight, as

illustrated in Figure 2. A radar would not detect a low flying vehicle until much later

in its flight path, thus compressing the timeline for any counter measures.

Figure 2. Radar detection points during trajectories of a HGV and a ballistic missile
[2].
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1.2 Problem Description

The current research stems from the push from the Pentagon and Congress to

deploy hypersonic weapons [2] and funding from the Air Force Research Laboratory

(AFRL). Research is focused on progressing simulations to create feasible trajectories

for various hypersonic missions and vehicles. The long term goal of the research

effort is to provide an algorithm for mission strategists to plan a feasible trajectory

for a hypersonic vehicle, be it glide or cruise, between a given target and initial

condition. The algorithm should be able to accommodate various mission objectives,

incorporated as performance measures. The entire flight path from commencement

to termination would be modeled at a sufficient level of fidelity. A sufficient level of

fidelity would include multiple constraints as well as the integration of the various

disciplines involved in accurately simulating a hypersonic system.

The scope of this research is limited to the initial realization of the simulation

software. The goal is to produce optimized trajectories for a generic hypersonic

vehicle in the glide phase of flight with a heating path constraint to gain insight

on the effects of various aerothermodynamic models. The process of continuation

will be explored as a method to solve the complex problem of hypersonic trajectory

optimization.

Direct orthogonal collocation methods, interchangeably called pseudospectral meth-

ods, were used to solve for optimized hypersonic trajectories. The pseudospectral

solver used herein was the GPOPS-II algorithm. Additionally, a comparison of

aerothermodynamic heating models will be analyzed including their effect on an opti-

mized trajectory. The heating constraints will be integrated into the system as path

constraints with a maximum limit not to be exceeded. The research effort herein will

focus on modeling hypersonic glide vehicles with a three degree of freedom dynamic

system. The mission chosen for this research effort was to maximize the range given
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a final target by leaving the initial vehicle position undefined. The algorithm would

then be free to converge upon an initial position that would maximize the trajectory

range while still arriving at the prescribed endpoint.

1.3 Research Hypothesis

The continuation process enacted upon an optimization software will result in

quick convergence times. The continuation process will also allow for a converged so-

lution of a complicated problem with path constraints. Different aerothermodynamic

models will result in different trajectories and achieve different minimum heating

rates and heat loads. Comparing aerothermodynamic models will reveal the most

conservative method of calculating the stagnation point heating rate.

1.4 Research Tasks

• Produce a converged solution for a simple hypersonic problem

• Create an algorithm for the continuation process

• Find a converged solution trajectory for a complicated problem with a path

constraint on the stagnation point heating rate through the continuation process

• Research aerothermodynamic models and compare trajectory solutions

1.5 Research Objectives

While there has been research in the field of optimizing hypersonic trajectories,

the knowledge in this research topic is far from complete. The ability to generate

hypersonic trajectories has been demonstrated, but the process is yet to be refined.

There are two objectives to begin the realization of the over-arching goal of creating an

5



algorithm that can accurately model a hypersonic trajectory. The first research objec-

tive is to understand the applicability of the continuation process with pseudospectral

methods. The second research objective is to compare various aerothermodynamic

models and their effects.

The applicability and utilization of the continuation process will be demonstrated

with iterations of code. Continuation is the method of starting with a simple prob-

lem and using the solution to seed a more complex problem. The progression of

optimized solutions utilizes different performance measures, i.e. missions, to build up

the complexity. The different performance measures demonstrate the adaptability of

the continuation process and simulation tool. The initial seed used was the solution

from the simple iterative Fourth Order Runge Kutta (RK4) process. The first use of

GPOPS-II code produced a converged solution for a generic HGV with the RK4 seed.

The next iteration produced a converged solution of the High Speed Army Reference

Vehicle (HARV) [5] optimized for a maximum range.

The solution of the optimized HARV trajectory was used to accomplish the second

objective of comparing aerothermodynamic models and their effects on an optimized

trajectory. A heat rate constraint was appended onto the code that produced the

HARV trajectory solution as a path constraint. Chapman [6], Sutton-Graves [7], and

Galman [8] equations were used as the three aerothermodynamic models in compar-

ison due to their similar fidelity levels. Each provides a stagnation point heating

rate. A heating rate profile and heating load profile were then determined from each

model to show the direct differences. Additionally, the resulting trajectories from the

application of each aerothermodynamic model were compared.
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1.6 Assumptions

The system dynamics were derived with the following assumptions:

• No thrust

• Spherical, non-rotating Earth

• Drag parallel and opposite to velocity

• Lift perpendicular to velocity

• The gravity vector is parallel to the vehicle position vector

Additional assumptions in this research effort include:

• Constant coefficient of lift CL and coefficient of drag CD

• The vehicle surface is in radiative equilibrium with the surroundings so the heat

rate constraint is directly linked to the surface temperature [9]

1.7 Document Overview

This document contains five chapters. This first chapter provided an introduction

to the research topic with motivation and scope of the work. Chapter II provides

the background information on the various disciplines and techniques involved in hy-

personic trajectory optimization research. A summary of previous relevant research

is provided for context. Chapter III describes the methods employed to accomplish

the research objectives. Details on the problem formulations and models used are

included. The research results on continuation and comparison of the aerothermody-

namic heating models are presented and analyzed in Chapter IV. Chapter V wraps

up with an overall analysis of the results, as well as a summary of the thesis to include

any challenges encountered as well as the future direction of research.
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II. Background

Hypersonic trajectory optimization is a complicated problem which incorporates

a multitude of disciplines. The background chapter is aimed at building an under-

standing of the disciplines utilized for the current research effort. Section 2.1 lays

the foundation of understanding hypersonic flow regime. Section 2.2 explains some

heat transfer theory and aerothermodynamic models. Section 2.3 explores various

vehicle models. Section 2.4 provides an overview of optimal control theory and the

optimization program to be used. Lastly, Section 2.5 is a literature review of the

relevant research conducted up to the current day to provide context for this research

effort.

2.1 Hypersonic Flow

Hypersonic flows differ significantly from subsonic and supersonic flows. There

is not a single event that marks the transition from supersonic to hypersonic flow.

Generally flows above Mach 5 are considered to be hypersonic [1]. The defining char-

acteristic that distinguishes hypersonic flow from other flow regimes is energy. Bertin

[10] describes the flow as having transitioned into the hypersonic regime when the

internal energy of the flow is small relative to the kinetic energy (KE) of the flow.

Hypersonic flow is physically different from supersonic flow [1]. The relatively large

amount of kinetic energy transfers or transforms into alternate forms; for example,

chemical reactions of molecules in the atmosphere. Chemical reactions of air molecules

are very unlikely to occur in other flow regimes and are considered negligible. The

kinetic energy transformation causes different physical phenomena. Anderson [1] com-

piled four defining characteristics of hypersonic flow: thin shock layers, the entropy

layer, viscous interactions, and high-temperature flow. Additionally, low-density flow
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is often a commonly experienced regime of hypersonic flights, but not necessary since

hypersonic speeds can be achieved in higher density air. For example, often times

shuttles on a reentry trajectory will experience hypersonic speeds at high altitudes

near space where the air has a lower density than air closer to the Earth’s surface.

However, a hypersonic glide vehicle can also experience hypersonic speeds closer to

the Earth’s surface in higher density air.

The flow field between the shock wave and vehicle body is thin relative to shocks

in slower supersonic flow conditions. This is consistent with oblique shock theory [1].

Figure 3 shows the shock wave angle of a wedge with a 15◦ half-angle at Mach 30 in

calorically perfect gas, assuming a constant specific heat ratio of 1.4. Solving with

oblique shock theory equations, the resulting shock wave angle is 18◦ [1], whereas the

same set up at Mach 2.5 would result in a shock angle of 37◦ [11].

Figure 3. Thin shock layer of 15◦ wedge in hypersonic flow [1].

Large entropy gradients occur inside the shock wave due to the streamline en-

countering different strengths of the shock depending on the location from centerline.

Crocco’s theorem relates areas of large entropy gradients with areas of strong vorticity.

The interaction between the inviscid ambient flow and boundary layer results in com-

plicated physical interactions barring any attempts at a simple standard boundary

layer calculation. A more detailed explanation can be found in [1].

Additionally, hypersonic flow contains a large amount of kinetic energy. The

9



kinetic energy of the freestream inviscid flow is transferred to the fluid within the

viscous boundary layer increasing the temperature. Pressure remains constant in

the boundary layer. To keep pressure constant with an increase in temperature, the

density must decrease. With the mass flow also remaining unchanged, the boundary

layer area must increase to accommodate a lower density. A thicker boundary layer

affects the surface-pressure distribution. Subsequently lift, drag, and stability of

the vehicle are affected. Skin friction and heat transfer also increase. Changes to

the inviscid flow are caused by interaction with a viscous boundary layer. Viscous

interaction is the interaction between the outer inviscid flow and the viscous boundary

layer. Viscous interaction effects are more prominent near the nose of a vehicle where

the pressure is greatest. The surface-pressure distribution is less extreme downstream,

but the effects remain. [1].

The transfer of kinetic energy to internal energy of gas molecules increases the

temperature significantly, i.e. thousands of Kelvin. The high temperature excites

the molecules and leads to chemical reactions. Once the flow becomes a chemically

reacting flow, the assumption of a constant ratio of specific heats is no longer valid and

must be accounted for to achieve realistic results. Convection and radiation are two

methods of heat transfer from the hot boundary layer to the cooler vehicle surface.

Convective heating occurs when objects are in contact with each other. Radiative

heating is when the temperature of an object is relatively higher than a near-by

object and heat waves increase the temperature of the cooler object. Convective heat

transfer is the more common method of heat transfer in all regimes and the largest

contributor to the heat rates and heat load experienced by an object. However, for the

special cases when radiative heating is present, it may become the dominant method

[1].

Another consideration of hypersonics are the specifics of the flow regimes a vehicle
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may encounter at hypersonic speeds. Low-density flow is a flow regime. A more

commonly known flow regime is the continuum flow regime. At sea level the average

distance between molecules of air, defined as the mean free path (λ), is 2.17 × 10−7

m. For a vehicle flying through the air at sea level is considered to be flying through

a continuum flow as it will experience a continuous medium. However, at higher

altitudes, air density decreases. At an altitude of 342,000 m, λ = 1 m and the

assumption of continuum flow is no longer accurate. A sufficiently dense atmosphere

is required for aerodynamic controls to work on a vehicle. Low-density flow is the

regime of flow where aerodynamics must be considered through the lens of kinetic

theory, as the assumption of continuum flow is not applicable. The free molecular

regime is when individual molecular impacts begin to matter due to the extremely low

density beginning around 500,000 m in altitude. A reentry vehicle will travel through

various flow regimes upon its reentry from space back down to sea level. Accurate

aerodynamics can only be predicted by applying the correct assumptions dictated by

the flow regimes. Knudsen number Kn is the similarity parameter that governs the

flow regime a vehicle is in. Kn is defined as Kn = λ/L where L is the characteristic

length of the vehicle body. A smaller Kn indicates a flow regime closer to continuum,

while a higher Kn indicates a regime closer to the free molecular regime. Therefore,

different sized vehicles can experience different flow regimes at different altitudes [1].

The key to determining the aerodynamics of a vehicle in hypersonic flight, such

as lift and drag, is in the ability to calculate the surface-pressure distributions over

the vehicle body. Hypersonic flow is non-linear, which inherently makes those calcu-

lations complicated. To find aerodynamic forces and moments on the vehicle, there

are two options: aerodynamic look-up tables [12] [13] [14] or calculating the surface

pressure distribution [15] [16]. Aerodynamic tables are convenient but only when

available. When the field of hypersonics was first being explored, access to current-
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day computing power was non-existent and as a result, a variety of simplified models

or theories were used, namely, local surface inclination methods. Local surface in-

clination methods were built off the inviscid, linearized, two-dimensional, supersonic

flow theory definition of the pressure coefficient,

Cp =
2θ√

M2
∞ − 1

(1)

where θ is the local deflection angle and M∞ is the freestream Mach number [1].

Equation (1) is not valid for hypersonic flows, however, the concepts can be modified

and then applied to hypersonic flows, restricted to thin bodies at small angles of

attack. Local surface inclination methods were useful to aerodynamicists because

a detailed solution of the complete flowfield is not required to predict the pressure

distribution over the vehicle body. Once the pressure distribution is known, the lift

and drag can be calculated. The ability to calculate coefficients of lift and drag are

beneficial, especially when aero-tables are unavailable [1].

Cp = 2sin2(θ) (2)

One of these surface inclination methods is the Newtonian method. Isaac Newton

derived the Newtonian sine-squared law, Equation (2), “for the force on an inclined

plane in a moving fluid” via his fluid-dynamic theory in the 1680s [1]. A schematic

for this law is provided in Figure 4 where V∞ is the velocity of the freestream and

θ is the angle the plate is inclined to the freestream. While the law was created for

application of low speed flows it was proven to be inaccurate. However, this is not

the case when applied to hypersonic flows.
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Figure 4. Schematic of Newtonian impact theory [1].

Newton unknowningly predicted thin shock layers when drawing an image of

freestream flow impacting the surface then following parallel to the body surface

downstream. To find the local surface deflection angle, θ, at a point on the body for

shapes other than a flat plat, a tangent line to the body is drawn at that point and

the angle is then between that tangent line and the freestream. Newtonian’s theory

assumes that the flow does not wrap around the body. The pressure coefficient Cp is

only calculated where the freestream impacts the body on the frontal area. Therefore,

the pressure on the leeward side, or shadow region, is assumed to be the freestream

pressure and Cp = 0 [1].

Cp = Cpmaxsin
2(θ) (3)

Lester Lees [17] proposed a modification to the Newtonian flow theory, provided

in Equation (2), with the maximum value of the pressure coefficient Cpmax in Equa-

tion (3). Cpmax is evaluated at the stagnation point behind a normal shock wave and

calculated from an equation derived from normal shock theory.

Finally, by keeping the vehicle limited to speeds below Mach 10, making assump-

tions to dismiss some high gas temperature effects within the boundary layer is per-

missible. Staying below Mach 10 is most beneficial for simplifying assumptions due to

avoidance of most chemically reacting flow complications which become more promi-

13



nent at speeds higher than Mach 10. Inviscid methods are valid to use for hypersonic

flow calculations because they account for thin shocks and surface heating. Viscous

effects on the vehicle will be accounted for via heat transfer methods applied to the

problem, discussed in Section 2.2.

2.2 Aerothermodynamic Models

As discussed in Section 2.1, a vehicle traveling at a hypersonic speed contains more

kinetic energy relative to a lower speed regime. As it slows, the KE is transferred

into other forms, such as thermal energy. The thermal energy is transferred to the

vehicle and boundary layer air molecules. However, only a small fraction of the

total KE is transformed into heat and transferred to the vehicle body [18]. The

nose region of the Apollo reentry capsule reached 11,000 K on its return through the

Earth’s atmosphere [1]. For context, titanium melts at 1943 K [19]. The fraction of

energy transformed to thermal energy is dependent on the vehicle size, vehicle shape,

aerodynamic regime, and speed. Usually around 1-5% of total thermal energy near

peak heating is transferred to the entry system [18].

The accurate prediction of the heating environment of an atmosphere’s interaction

with a system is important for the design to ensure survivability. Typically, an over

prediction of heat rate is preferred to create room for uncertainty, but is not required.

The discipline of aerothermodynamics is closely coupled with a thermal protection

system (TPS) design because it is based on heat calculations. The type of material

used for a TPS is determined by the heat rate, while the TPS thickness is determined

by the heat load. There is an important distinction between heat rate and heat load

[18]:

• Heat rate (q̇) is the instantaneous heat rate at a point on the vehicle. Typical

units are Watts per meter squared (W/m2) [18]
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• Heat load (Q) is the integration of heat rate with time over a trajectory, usually

Joules per meter squared (J/m2) [18]

Heat rate is the more commonly calculated term in hypersonic trajectory opti-

mization problems. Examples of heat rate calculations can be found here: [12] [14]

[15] [16] [20] [21] [22] [23] [24]. The trajectory flown can affect heating on the ve-

hicle as well, for example, comparing the difference in instantaneous heat rates at

the stagnation point vs. the total heat load. To illustrate this, Figure 5 compares

two identical ballistic vehicles on a reentry trajectory with differences in either flight

path angle (γ) in Figure 5a, i.e., steepness of reentry, or ballistic coefficient (β) in

Figure 5b [18]. The ballistic coefficient is

β =
W

CDS
(4)

where W is the weight, CD is the drag coefficient, and S is the wetted area [1]. Taken

from [18], Figure 5a shows the different trajectories resulting from shallow and steep

entries. The steeper angle has a higher peak heat rate and a lower total heat load

relative to the shallower angle. Figure 5b compares trajectories from high and low

ballistic coefficients. The higher ballistic coefficient results in both a higher peak heat

rate and heat load relative to the lower β [18]. For a vehicle to have a higher ballistic

coefficient, looking at Equation (4), would mean the vehicle has less drag, less wetted

area, or more weight.
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(a) Difference in flight path angle. (b) Difference in ballistic coefficient.

Figure 5. Trajectories of two identical ballistic vehicles [18].

The results of Figure 5 are summarized in Table 1.

Table 1. Differences in heat rate and heat load for trajectories with various flight path
angles and ballistic coefficients.

Increase flight path angle (γ) Increase ballistic coefficient (β)

Heat Rate Increase Increase

Heat Load Decrease Increase

The theory of stagnation point radiative heat transfer is the foundation for a lot

of the aerothermodynamic models. When atoms or molecules collide, usually, they

will emit a photon that carries energy with it. Photons, which effectively travel

instantaneously, are emitted isotropically. The integration of those photons hitting

the surface, multiplied by the energy they contain, is radiative heating. In other

words, radiative heating is the heat transfer to the vehicle from radiation produced

by excited atoms and molecules in the shock layer [18].

Calculating heat rate at a stagnation point is the method of preference in the

field of hypersonic trajectory optimization problems. Most research uses models that

only account for convective heat transfer. From the literature review conducted in

Bettinger’s section on “The Atmospheric Flow Environment and Heat Flux”, con-

vective heat transfer was concluded to be dominant over radiative heat transfer at

speeds below 11 km/s [25]. For example, an ICMB velocity of 6 km/s experienced a
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convective stagnation heat rate around 3 times larger than the radiative heat rate.

Maximum radiative heat rates were confirmed to be parabolic with a peak around 11

km/s. The research effort herein will set a maximum speed boundary limit of 8 km/s

in attempt to produce more realistic heat rate estimates.

Chapman derived a general version of a stagnation point heat rate equation from

boundary-layer equations beginning with the Navier Stokes equations of continuity,

momentum, and energy [6]. The heat rate equation at a stagnation point has the

assumptions of axially symmetric flow, equilibrium air, and negligible radiative heat

transfer. Chapman states that neglecting radiative heat transfer is realistic “if the

ratio of the energy radiated (per unit mass along a streamline) to the local static

enthalpy is small” [6]. Radiative heat transfer can be assumed negligible at speeds

below Mach 10. Therefore, the equation only accounts for convective heat transfer

and calculations of heat transfer rates will be inaccurate.

q̇s =
C√
R
(
ρ∞
ρ0

)n(
ū

cos(ϕ)
)m (5)

The general Chapman equation of heating rate at a stagnation point (q̇s) can be

calculated with Equation (5) where C, n, and m are constants that depend on the

type of boundary layer flow [6]. Typical values for the constants are m = 3 for Earth,

n = −0.5 for laminar flow, and C = 17, 000 when in air.

q̇s = 1.63× 10−4(
ρ

Rn

)
1
2V 3 (6)

Equation (6) is the more commonly found form of the Chapman equation which

is for Earth’s specific atmosphere. The Chapman model equation is a simplified

aerothermodynamic model. Equation (6) has been written without the hot wall

correction term because the term is frequently neglected in hypersonic flows where
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the wall enthalpy is much lower than the freestream enthalpy [18]. The form of

Equation (6) for the Chapman model has been used by many authors [12] [14] [20]

[21] [22] [23] [24]. There are additional simplified stagnation point heating models

that follow a similar equation as the Chapman model.

Overestimation and underestimation from stagnation point heating rate models of

similar fidelity to the Chapman model were shown in Bettinger’s section on “Verifica-

tion and Selection of Heat Flux Model” [25]. Stagnation point heating rates calculated

from various estimation models were compared to flight data obtained from various

NASA vehicles including two flights in 1966 from suborbital Apollo command mod-

ules, a space shuttle (STS-5), and a Crew Exploration Vehicle (CEV), as depicted in

Figure 6.

Figure 6. Comparison of stagnation point heat rate models with flight data from various
NASA vehicles [25].
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For blunt body vehicles, capsule-like in design, models overpredicted heat rates by

an order of magnitude or more. For the winged body of the space shuttle, in the far

right column of Figure 6, models underestimated heat rates by around 50%. However,

Bettinger points out some considerations that justify the use of a stagnation point

heat rate models [25]. He noted that the largest differences between model estimations

and flight data occurred with blunt body spacecraft, like the capsule design of the

Apollo command module and CEV. Additionally, models excluded any radiative heat

transfer contributing to the inaccuracies. Lastly, final consideration was the accuracy

of the flight data being used to validate estimations. The closest approximation of the

models was to the space shuttle, a winged vehicle [25]. While none of these NASA

vehicles resemble the sharp nosed vehicle models to be used in this research, it is

important to understand the inaccuracies of a simple heat rate model.

A higher fidelity model is the reference enthalpy, or reference temperature, method

which takes into account compressibility effects in a simplified manner via some ref-

erence temperature inside the boundary layer [1]. Reference enthalpy methods are

better suited for slender bodies [16] due to the simplicity of application to hypersonic

problems [1]. One such method of reference enthalpy is Eckert’s Reference Enthalpy

method [1] [16], defined as

Q̇(u, Tx) = St(Tr)ρ(Tr)Ve[Haw(Tr)−H(Tw)]. (7)

St(T ) =
cf (t)

2Pr(T )2/3
(8)

Haw(T ) = H(Te) + Pr(T )rf
V 2
e

2
(9)

H in Equation (7) is enthalpy calculated with Equation (9), ρ is air density, St is the

Stanton number calculated with Equation (8), and all are temperature dependent.
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Tr is the reference temperature, Te is the edge temperature, cf is the skin friction

coefficient, and rf is the recovery factor calculated with Equation (10).





rf = 1
3
, cf (T ) = 0.370[log10Re(T, xle)]

−2.584, turbulent flow

rf = 1
2
, cf (T ) = 0.664Re(T, xle)

−0.5, laminar flow

(10)

For Equation (10), Re(T, xle) =
ρ(T )Vexle

µ(T )
and xle is the distance from the leading edge.

The edge temperature will equal the reference temperature for a flat plate [1] which

is a valid when using the Modified Newtonian Method as applied by Coulter [16].

Additionally, the vehicle can experience enormous forces at high speeds that would

need to be constrained to ensure its structural survival. Therefore, a normal load

(n) and dynamic pressure (q) constraint will likely be incorporated into the final

simulation tool [23] as

n =
1

m

√
L2 +D2 ≤ nmax, (11)

q =
1

2
ρV 2 ≤ qmax, (12)

where m is the vehicle mass.

One of the highest fidelity heat transfer models is computational fluid dynamics

(CFD). CFD provides an accurate numerical analysis of a system. It is the most

computationally expensive of all the previously mentioned methods, however, it’s

accuracy provides invaluable detail. The results are able to be fed back into an

optimization algorithm or used as validation. More on CFD can be found in [26].

While CFD was not incorporated in this research, it was considered in collaboration

with a research counterpart and will be studied in future work.
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2.3 Vehicle Models

Starting in the 1950s with the space race, a need for new technology arose. Ve-

hicles and capsules had to be designed to withstand the heat from reentry into the

atmosphere to ensure survival [27]. The emergence of space flight meant the effects

of hypersonic flow conditions had to be incorporated into new technologies [1] for

both manned and unmanned vehicles. As research expanded, different ideas were

presented ranging from non-winged blunt body capsules, like the Apollo 10 capsule

shown in Figure 7a, to slender symmetrical winged vehicles [27]. In 1961, the X-15

achieved its first hypersonic flight endo-atmospherically, exceeding Mach 5 [1].

(a) Apollo 10 command module [28].

(b) North American X-15 aircraft [29].

Figure 7. Blunt body, Apollo 10, and slender body, X-15, vehicles.

Blunt bodies became the choice of shape for manned reentry vehicles, which

achieve hypersonic speeds, due to their ability to create normal shock waves. Shock

waves dissipate energy into the surrounding gas by converting KE into internal energy

of the gas molecules. Therefore, chemical reactions, dissociation, and ionization can

occur at higher speeds [18]. However blunt body capsules have minimal aerodynamic
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maneuvering [30] [18]. Maneuvering is required for applications of precision. Slender

bodies have lower drag and are more maneuverable than blunt bodies [18]. Slender

body vehicles are driven by oblique shock relations, whereas blunt bodies are driven

by normal shock relations [17].

A majority of research in the field of hypersonic trajectory optimization use slender

body models or modification on existing experimental slender body vehicles, like

the SR-71 [12], X-15, generic Common Aero Vehicle (CAV) model [12] [24], Generic

Hypersonic Aerodynamic Model Example (GHAME) [14], X-43 [31], and X-51 [31]. A

lot of projects have focused on hypersonic glide vehicles, thereby, neglecting to include

a propulsion model [16] [32] [20] [13] [22] [15] [23] [9]. For the current research, the

High-Speed Army Reference Vehicle (HARV) was used [5]. The HARV is an open

source geometry created by the Army to facilitate foundational research and fill the

gap in knowledge of hypersonic vehicle aerothermodynamics. HARV dimensions are

given in calibers allowing for scaling. A few variations of the vehicle were provided

in the technical note [5]: the choice between a cone or ogival nose and three or four

fins. Figure 8 shows a solid model representation of the cone nose configuration with

four fins.

Traditionally, hypersonic glide vehicles are either boost-launched or air-launched.

When ground or boost-launched, the launch is typically accomplished via a rocket

booster. This is a relatively straight forward phase of flight which many papers do

not include in their trajectory optimization model. Often the addition of a launch

phase is recommended as future work for completeness.

Hellman in 2014 worked on a project of simulating various launch trajectories to

get the Defense Advanced Research Projects Agency (DARPA) XS-1 up to Mach

10, which was one of the program’s requirements [21]. The paper focused on trading

dynamic pressure values, via constraints, for sustained flight time above certain Mach
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Figure 8. Solid model rendering of HARV with cone nose and four fins [5].

numbers. Unfortunately the paper did not go into detail on the exact propulsion

model used to simulate a reusable first stage rocket which was the modeled propulsion

system. However, it can be inferred that a simple one-dimensional thrust model was

used.

T = g0ṁfIsp (13)

An example of a standard thrust equation is Equation (13) [14]. The one-dimensional

thrust model in Equation (13) is commonly found in papers that incorporate a propul-

sion model into their system. Oftentimes, a more complicated propulsion model is

found in papers like Dalle [31] who focused on a hypersonic cruise vehicle (HCV) via

incorporating air-breathing propulsion models with a hypersonic trajectory. While

propulsion models for air-breathing engines in the hypersonic flight regime are com-

plicated and necessary to model for HCVs, HGVs do not include these dynamics.

The flight dynamics remain the same throughout the glide phase of an HGV.

Vehicle properties are incorporated into both three degree of freedom (3DOF)
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and six DOF equations of motion (EOMs). The connection of a vehicle’s properties

is easily recognized in a six DOF model where the forces and moments are calculated

for each surface of the vehicle. For 3DOF models, the dynamics of the system assume

a psuedo point mass, due to the incorporation of lift and drag but not encapsulating

all forces and moments. Vehicle properties such as mass and wetted area are included

in calculations. The psuedo point mass assumption is common when utilizing 3DOF

EOMs.

2.4 Optimal Control Theory

The goal of optimal control theory is to solve for a set of control inputs of a

dynamic nonlinear system that will result in system states which will minimize (or

maximize) a performance index all while satisfying system dynamics and any defined

constraints or boundary conditions [14].

2.4.1 Optimal Control Problem Formulation

Kirk defines three major factors that form an optimal control problem [33]. Defin-

ing these will build the foundation for understanding the control methodology outlined

in Chapter 3. The first factor in the formulation of an optimal control problem is the

mathematical model of the system or process to be controlled [33]. System dynam-

ics are mathematically represented with ordinary differential equations (ODE). The

ODEs are commonly written in state variable form. The n number of state variables,

or states, of the system at time t are denoted as

x1(t), x2(t), ..., xn(t) (14)
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and the m number of control inputs, or control, at time t are

u1(t), u2(t), ..., um(t) (15)

The system is then denoted as a set of n first order ODEs as shown below [33]

ẋ1(t) = f1(x1(t), x2(t), ..., xn(t), u1(t), u2(t), ..., um(t), t)

ẋ2(t) = f2(x1(t), x2(t), ..., xn(t), u1(t), u2(t), ..., um(t), t)

...

ẋn(t) = fn(x1(t), x2(t), ..., xn(t), u1(t), u2(t), ..., um(t), t)

(16)

In compact notation, states and controls are compiled into vectors so the system

dynamics can then be written as

ẋ(t) = f(x(t),u(t), t) (17)

where any bold variables indicate vectors [33].

The second factor in the optimal control formulation is the physical constraints of

the system [33]. Constraints are set on the states and control to enforce the dynamics

and boundaries of the search space. Path constraints may consist of inequality or

equality constraints depending on the variable and type of restriction being imposed

on the system. Boundary conditions are set to limit the problem space on both the

states and control. Boundaries reduce the search space required for the non-linear

programming (NLP) solver and can aid in convergence on a solution. Together,

constraints result in an admissible control and an admissible trajectory.

The third factor in the problem formulation is the performance measure, also re-

ferred to as a cost function or objective function (J) [33]. A performance measure
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provides the ability to quantitatively assess a system’s performance designed to a spe-

cific performance measure [33]. Performance measures are chosen either by necessity

from the problem or subjectively by the researcher [33].

J = ϕ(x(tf ), tf ) +

∫ tf

t0

L(x(t),u(t), t)dt (18)

The generic formulation of a cost function is given in Equation (18) where t0 and tf

are the initial and final times, ϕ is the terminal cost at the boundary, and L, also

referred to as the Lagrangian, is the running cost which incurs a value at each time

step [33]. Depending on the objective of the problem or the preference of the user, the

performance index can be expressed in three different forms. The Mayer form only

involves a terminal cost, while the Lagrange form only has the running cost, and the

Bolza form includes both a terminal and running cost [34]. Equation (18) is written

in Bolza form. There is no correct form of a cost function.

min
u∗∈U

J = tf (19)

min
u∗∈U

J = −
∫ tf

t0

V dt (20)

Examples of common cost functions for hypersonic trajectory optimization problems

are final time [16] as shown in Equation (19) in Mayer form, minimizing energy,

maximizing terminal velocity [20], or maximizing range [14] as shown in Equation (20)

in Lagrange form.

To explicitly define a generic optimal control problem: The goal is to find an

admissible control (u) that will cause the system to follow an admissible trajectory

(x) which minimizes the cost function when input into the system of ODEs [33]. When

this is true u and x are defined as the optimal control and the optimal trajectory,
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respectively defined as u∗ and x∗. Due to the nature of non-linear problem solutions,

it may not be possible to guarantee that x∗ and u∗ provide the global optimal solution.

The problem solution will converge to a local minimum. However, uniqueness is not

guaranteed and other solutions may be found when the initial guess on the states

and control are modified. Limiting the scope and range of admissible solutions can

be done by subjecting the system and problem to equality constraints, inequality

constraints, and boundary conditions [33].

Given the state dynamics, control, cost function, and constraints, many meth-

ods exist that are used to solve optimal control problems which can be split into

two categories: indirect and direct. Indirect methods require the derivation of a

Hamiltonian Boundary-Value problem from the theory of calculus of variations which

requires the derivation of first and second-order optimality conditions. For analytical

solutions, often times these are systems of nonlinear differential equations and solving

the necessary conditions becomes very complicated, if even possible. Direct methods

are an approximation of the optimal control problem by parameterizing the states

and control using function approximations. The problem is converted to a nonlinear

programming (NLP) problem and can be fed into a NLP solver.

Figure 9 summarizes the process of indirect and direct methods. While it is

possible to use indirect methods as shown by Grant [20], direct methods are strongly

preferred for complicated problems as they take advantage of linear analysis through

Gaussian quadrature and polynomial approximation [14].

27



Figure 9. Indirect methods vs direct methods [35].

Direct methods are advantageous due to the ability to apply phases to the problem

and the meshing that can occur in the solution. A phased solution can be obtained by

formulating the problem into two or more separate, but connected, optimal control

problems when the constraints or system dynamics do not have the same definition

across the admissible solution space. In other words, a phased solution is essentially

a sequence of single-phase optimal control problems that would collectively span the

entire problem space [14]. Phases do not need to necessarily be linked sequentially,

but still need to relate, as shown in Figure 10. In other words, one phase can be

linked to more than just one, sequential phase. More on linking phases can be found

in [36].
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Figure 10. Schematic of phase linkages in a multi-phase optimal control problem [37].

2.4.2 Direct Collocation Methods

Direct collocation methods use the roots of orthogonal polynomials to define the

collocation points where a solution to the optimal control problem will be found.

The position of collocation points are important to achieving an accurate solution.

Previous research has shown that when collocation points are equally spaced, which

is the simplest configuration, the polynomial interpolation leads to large errors as the

number of collocation points is increased, specifically at endpoints. This exasperated

error at the endpoints is referred to as the Runge Phenomenon, as shown in Figure 11.

Figure 11. Runge Phenomenon with evenly spaced collocation points [12].
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There are three different methods discussed herein for collocation point selection:

Legendre-Guass (LG), Lengendre-Gauss-Radau (LGR), and Legendre-Guass-Lobatto

(LGL). Figure 12 visually demonstrates the difference between the three collocation

methods where the selection is based on which endpoint(s), if any, are included. The

choice will affect how the continuity of boundary conditions are met with numerical

methods and the “maximum order for high-order polynomials to still obtain an exact

result in Gaussian quadrature” [14]. Since Lagrange polynomials are orthogonal,

meaning they are easily integrated or differentiated, they can be “invoked at the

collocation points to minimize integration errors” [14].

Figure 12. Pseudospectral collocation point selection methods [37].

A few software packages exist that implement a mesh on the solution when solving

with direct orthogonal collocation methods. Betts demonstrated that a mesh is de-

veloped to decrease the error on the solution by changing the order of the polynomial

approximation of the solution, p method, or by increasing the number of intervals

in the solution space, h method [34]. Originally, direct collocation methods were de-

veloped as h methods (e.g., Euler or Runge-Kutta methods) where the time interval
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is divided into a mesh and the state is approximated using the same fixed-degree

polynomial in each mesh interval [37]. Software has evolved since to include both p

and h methods.

2.4.3 GPOPS-II

Starting near the turn of the century, direct collocation methods gained trac-

tion as the preferred method for solving numerical solutions to nonlinear optimal

control problems [37]. The solver being used for this research is GPOPS-II. It was

created by Patterson and Rao and employs direct orthogonal collocation techniques

[37]. GPOPS-II specifically uses the variable-order Gaussian quadrature collocation

method that is a PS method of orthogonal basis functions [37].

GPOPS-II meshing utilizes a hybrid method called hp-adaptive Gaussian quadra-

ture collocation method which allows a specific accuracy of numerical approximation

to be achieved by either varying the number of points or the degree of the polyno-

mial with each mesh iteration. Therefore, it can capitalize on the exponential rate

of convergence for smooth sections of the solution and only increase the number of

points in areas of rapid changes due to non-linearities. The largest advantage for the

hp-adaptive method is the “significantly smaller finite-dimensional approximation” of

the solution [37]. Additionally, since the hp-adaptive method is a direct method, it

converts the assumed continuous time problem to a non-linear programming (NLP)

problem.

GPOPS-II has two NLP solvers available to the user: interior point optimizer

(IPOPT) which uses an interior-point line-search filter method or sparse nonlin-

ear optimizer (SNOPT) which uses a sequential quadratic programming algorithm.

GPOPS-II no longer updates or supports SNOPT [37]. GPOPS-II uses the LGR

collocation method with the option of differential or implicit integral form. LGR is
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chosen by the authors based on their reasoning that “it provides highly accurate state,

control, and costate approximations while maintaining a relatively low-dimensional

approximation of the continuous-time problem” [37].

Figure 13 summarizes the operations [37]. The user will input an optimal control

problem into GPOPS-II and define all the bounds, variables, constraints, etc. The

problem is then scaled automatically, per user settings, by calling an optimal control

problem scaling algorithm. The scale factors resulting from the scaling algorithm

are also used for the NLP. The optimal control problem is then transcribed to an

NLP and solved on the initial mesh with an NLP solver (usually, either IPOPT or

SNOPT). The NLP approximation is transcribed back into a discrete approximation

and the error is estimated. If the error is larger than the user defined tolerance, the

process repeats with a new mesh. Otherwise, the program terminates and outputs

the solution [37].
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Figure 13. Flow chart of GPOPS operations [37].

2.5 Previous Work

The hypersonic field experienced a resurgence of research around the 2010s. Dur-

ing this time, optimization software and algorithms were also being developed. Tra-

jectory optimization of hypersonic vehicles came into its own research topic to com-

pliment the design process of new hypersonic technologies. This section will discuss

some of the relevant research that has been accomplished so far. The compilation of

previous projects will provide context for the current study.

Jorris’ research objective was to design an optimal reentry trajectory of the Com-

mon Aero Vehicle (CAV) that would minimize flight time [12]. The trajectory was

also subject to waypoint, no-fly zone, heating, and dynamic pressure constraints.

Jorris used the GPOPS algorithm, a psuedospectral optimization technique, to ac-
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complish this project implementing 3DOF vehicle dynamics to model a generic HCV

and HGV. The HGV vehicle model used was the CAV. The generic HCV included

a thrust component calculated to maintain a constant altitude. This simplified the

problem and allowed for the use of two dimensional equations. The HGV modeled

with the CAV had no thrust. However, it was a more complicated three dimensional

(3D) problem. While both had bank angle as the control, the HCV had a normalized

bank angle between positive and negative 20 degrees and the CAV had bank angle

bound between positive and negative 60 degrees. The lift coefficient was normalized

and limited at 2, derived from aerodynamic data tables. The solution was calcu-

lated with various methods. A suboptimal baseline trajectory was calculated using

bang-level-bang control. Additionally, optimal trajectories via geometric and ana-

lytical methods were found for the two dimensional problem set ups. Both optimal

solutions, via geometric and analytical methods, were very similar to each other and

showed a clear improvement from the baseline technique with minimized flight time

among other parameters. Numerical solutions found via the GPOPS algorithm for

both the two and three dimensional problems were validated against the analytical

solutions as shown in Figure 14 and Figure 15, respectively. The results between the

numerical and analytical solutions were approximately equal.

Figure 14. 2D analytical solution using Bryson’s method and 3D CAV numerical solu-
tion [12].
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Figure 15. 3D analytical and numerical seven phase solutions [12].

The overall contribution from Jorris’ research validated the direct numerical so-

lutions provided by a then-new optimization technique, via GPOPS code, as well as

demonstrating efficient user implementation with arbitrary phases, waypoints, and

constraints. Follow on from Jorris was work by Karasz in 2008 [38]. He expanded on

Jorris’ solutions to include an analysis of sensitivity to additional waypoint locations

as well as incorporating a slightly higher fidelity model by including the Earth’s ro-

tation and 3-dimensional spherical shape in the system dynamics. Karasz ran into

days long computation times for convergence. Reducing computation time in addi-

tion to incorporating path constraints was recommended. Another suggestion was to

attempt “an exercise in applying corrections on top of corrections” [38]. Essentially,

Karasz was recommending the process of continuation.

Jorris was involved in research published by Rexius et al. in 2013 along with

Anil Rao, one of the GPOPS creators [24]. Their research aimed to fulfill the need

of creating optimal flight test trajectories for HGV programs. Jorris’ previous work

demonstrated the ability of pseudospectral optimal control to find reentry trajectories

for the CAV model while including constraints like waypoints, no-fly zones, and aero-

dynamic heating path constraints [12]. Rexius et al. presented “the implementation

of multiple complex models representing a three-stage booster and a hypersonic glide
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vehicle (HGV) similar to the CAV within the GPOPS framework” [24]. The problem

formulation included constraints on the aerodynamics, aerothermodynamics, aircraft

stability, vehicle loads, and the inclusion of no-fly zones. Furthermore, the effect on

the aerothermodynamics of three different guidance methodologies were compared.

The glide portion of the flight path was split into six phases. The cost function, in

mayer form, was set to minimize the stagnation point heat rate, calculated by the

Chapman equation, at the end of the first glide phase, defined as the moment “when

there is sufficient lift on the glide vehicle to zero the flight path angle,” [24]. Aerody-

namic look-up tables were utilized and fitted with polynomial interpolation equations.

Results focused on the effects of the chosen cost function, constraints, and glide phase

guidance methodologies. Results compared the GPOPS optimal solution to the “orig-

inal” optimal solution. The “original” optimal solution is never explicitly defined by

the authors, however, the problem formulation can be assumed unconstrained. The

cost function of the “original” solution is undetermined, unless the reader wants to

assume it was the same as Jorris’ previous work as minimum flight time. The chosen

cost function affected the boost profile to reduce the separation altitude by approxi-

mately 30 percent as shown in Figure 16. The GPOPS solution with a cost function

designed to minimize heat rate reduced the maximum heat rate by approximately 20

percent when compared to the original solution shown in Figure 17.

36



Figure 16. Boost and HGV re-entry altitude profile comparison of the original optimal
solution in red vs with the chosen cost function in blue [24].

Figure 17. HGV stagnation heat rate comparison calculated with the Chapman equa-
tion [24].
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One of the largest takeaways from the research was the conclusion that prioriti-

zation of the lowest heat rate, but not necessarily the lowest heat load, may be more

favorable for an HGV. However, the authors also caveat this recommendation with

the recognition of the influence of other important factors or missions. Rexius et al.

also noticed challenges with implementing complex aerodynamic tables that result

in non-smooth derivatives as well as GPOPS method for auto-scaling. The authors

found the internal scaling features of GPOPS to be very sensitive to convergence on

a solution with small scaling changes or excessive bounds on the states and control

meaning the difference between convergence or not. The recommended remedy to

the scaling challenge was either implementing a user-defined auto scaling function or

non-dimensionalization. Future work looked to tackle some of their challenges as well

as expand research with more cost functions and guidance methodologies.

In 2014, research by Masternak was published in his PhD dissertation with a goal

of developing a tool and methodology to generate optimal hypersonic trajectories

via optimal control formulation incorporating various path constraints including a

heating constraint [14]. An air-breathing hypersonic aircraft with a scram jet was

modeled using traditional 3DOF equations of motion and a simple one-dimensional

thrust equation for the propulsion system. Thrust and other aerodynamic values

were found through aerodynamic look up tables of empirical data for the Generic

Hypersonic Aerodynamic Model Example (GHAME). The Chapman model and the

NASA MINIVER heating model, a medium fidelity model, were used for calculating

the heat rates. Additional path constraints on waypoints, g-limits, and no fly zones

were included. Angle of attack, roll angle, and propellant mass flow rate were used

as the controls. For a different cost function which included a control penalty, the

controls were then angular rates of angle of attack rate, roll angle rate, and propellant

mass flow rate. A table of Masternak’s various mission formulations is shown in
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Figure 18.

Figure 18. Masternak’s research scenario attributes [14].

Overall the results proved the ability of using GPOPS-II to generate multiple

optimal trajectories for an air breathing vehicle with various mission priorities and

path constraints fairly rapidly. Figure 19 shows the altitude and velocity profiles of

the trajectory. Masternak added a caveat that lengthy run times could be expected

for most stressing scenarios.

Moving forward, Masternak discussed implementing higher fidelity models for the

vehicle, i.e. 6 DOF EOMs, the aerothermal model, and better propulsion models

especially for the transition phase from turbine to ramjet to scramjet. He also rec-

ommended against using NASA’s MINIVER aerothermal model due to its incompat-

ibility with MATLAB and consequently, GPOPS-II. Masternak’s research is relevant
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Figure 19. Altitude and velocity of optimal trajectory of minimum time with climb,
cruise, and land [14].

Figure 20. Heating rates of optimal trajectory of minimum time with climb, cruise,
and land [14].
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to this research due to the similarities in goals. While certain specifics of the two

projects may be different, Masternak’s results develop intuition.

In 2015, a paper was published by Rizvi et al. on determining the optimal burnout

conditions for a hypersonic boost-glide vehicle trajectory and conducting a heat load

analysis of various vehicles [9]. Three different vehicle shapes, listed in descending

order of lift-to-drag ratios in the hypersonic regime, were compared: a waverider

similar to DARPA’s X-41 CAV, a wing-body configuration, and a lifting-body design.

The waverider configuration has the ability of a trim L/D ratio above 3 at hypersonic

speeds. A wing-body shape gets a trim L/D above 2 and a lifting-body design gets

slightly above one. The problem formulation was very similar to the set-up of this

research effort with three degree of freedom equations of motion, assumptions of a

spherical, non-rotating Earth, and a focus on the reentry glide phase of flight. Lift and

drag coefficients for each vehicle used curve-fitted equations from aerodynamic data

and assumed to be functions of angle of attack only. Initial conditions were specified

for a missile launch pad, since the boost phase was included in simulations. The

burnout velocity of the two stage rocket was around 3.7 km/s. The burnout velocity

was applied to all vehicle simulations. Final conditions were based off traditional

penetration requirements of a conventional warhead. Therefore, a final vehicle radius,

speed, and flight path angle were defined. Path constraints on the system were the

stagnation point heating rate calculated from an equation given by Scott et al. [39]

in Equation (21), extremely similar to the Chapman model, and dynamic pressure.

Q̇ = Cρ0.5V 3.05 (21)

In Equation (21), the heat rate is Q̇, ρ is density, and V is the velocity. C is

a proportionality constant, which is based on the nose radius and vehicle material.

The maximum heating rate Q̇max constraint was determined to be 4 MW/m2 from
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the maximum temperature of around 2900 K at which a carbon-carbon composite

material can retain its properties [9].

Tw =

(
Q̇

σϵTH

) 1
4

(22)

Assuming the surrounding are in radiative equilibrium, the vehicle surface tem-

perature can be linked directly to the heating rate with Equation (22), known as

the Stefan-Boltzmann Law [18], where the gas temperature Tg is much less than the

wall temperature Tw [40]. The Stefan-Boltzmann constant, σ is 5.67e-8 W
m2K4 and

surface emissivity, ϵ, is estimated at 0.8. A table from Rizvi et al. shows some of the

linked values between a maximum heating rate and a maximum temperature [40].

The dynamic pressure constraint was calculated from the terminal conditions.

Table 2. Maximum temperature values corresponding to the maximum heat rate limits
[40].

Q̇max Tmax

(MW/m2) (◦C)
3.5 2,690
3.0 2,580
2.5 2,450
2.0 2,305
1.5 2,125
1.0 1,895

Heat load was calculated via the integration of heat rate. Controls for the vehicles

were bank angle and angle of attack. The cost functions were maximizing down-

range and cross-range, equivalent to maximizing the final longitude and latitude,

respectively. The researchers also used hp-adaptive pseudospectral methods via the

GPOPS-II software. Previous studies by Rizvi et al. “showed that the integrated

heat load can be reduced by as much as 50 percent with a penalty of only 10 percent

in the overall down-range” [9]. Results discussed the optimal burnout conditions

and trajectories for each vehicle for a medium range application. Medium range
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was considered to be around 2,000 km. Optimal trajectories, with optimal burnout

conditions were found for the waverider while meeting all path constraints. Both the

down-range and cross-range of the waverider configuration were higher than the other

configurations. The integrated heat load for the waverider configuration was found

to be approximately five times higher than a wing-body configuration and an order

of magnitude higher than the lifting body configuration. The heat load was found

to increase exponentially with lift-to-drag ratio due to the increased flight time as

shown in Figure 21.

Figure 21. Integrated heat load vs lift-to-drag ratio with a burn out speed of 3.7 km/s
and a down range of 1,600 km [9].

In a 2019 paper published by Hood et al., research was conducted on rapid hyper-

sonic trajectory optimization comparing convergence speeds between various model

fidelities [13]. The system dynamics were represented with 3DOF equations with the

assumptions of a non-rotating Earth and no thrust to model an HGV. The vehicle
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model of the HGV was a modified X-43 accompanied by aerodynamic look up tables.

Two key results were established: “First, we discovered that aerodynamic surrogates

facilitate convergence for a pseudospectral optimizer, and thus allow for a much more

accurate solution with a small increase in computation time” and “noted the impor-

tance of considering additional vehicle constraints based on behavior demonstrated

in a higher fidelity simulation when writing optimization algorithms that employ a

lower-fidelity model.”

Corey Lee’s research in 2020 accomplished solving for HGV optimal trajectories

using reinforcement learning through artificial intelligence (AI) [41]. The AI was able

to generate trajectories for both a two dimensional and three dimensional (3D) prob-

lem set up using 3DOF reentry equations of motion to model the system dynamics.

The trajectories were subject to various constraints, including acceleration, heating,

and dynamic pressure. The AI solutions were validated against GPOPS-II code.

However, the AI did not produce converged results. Lee explains that “convergence

[of AI] would take weeks.” Therefore, the AI solution cannot be confirmed to be the

optimal solution. For the three dimensional GPOPS-II solution, a convergence was

not pursued because it was determined that a better initial guess is required, which

was outside the scope of the project. This research will share similarities with Lee’s

project in terms of the project goal in generating trajectories, with the difference

of achieving convergence via GPOPS-II instead of AI. The issue that Lee ran into

of needing a better initial guess will be addressed with the method of continuation.

Continuation inherently will provide more sophisticated guesses with each iteration.

More recently published is research by Coulter et al. in 2021 [16]. Coulter’s paper

presented preliminary results that proved the feasibility of the proposed approach

to incorporating high-fidelity aerothermodynamic models with hypersonic trajectory

optimization. An unpowered X-43 without fins was used as the generic hypersonic
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vehicle model. One of the goals the researchers set out to prove was the ability to

calculate aerodynamic values in lieu of relying on aerodynamic tables which are costly

or computationally time consuming. L/D values were generated using an in-house

Modified Newtonian Theory (MNT) code to calculate the pressure on each panel and

use it to solve for lift and drag. The L/D values qualitatively matched X-43 data.

The aerodynamic values were used to calculate the heat rate via Eckert’s Reference

Enthalpy Method. Two simulations were run on GPOPS-II code both with and with-

out path constraints on heat rate, normal load, and dynamic pressure. The equations

of motions were dimensionless, which significantly reduced the challenge of scaling

in GPOPS-II. While non-dimensionalizing may be convenient, it can quickly become

laborious when continuously changing or appending new additions to the current

problem formulation. The cost function was aimed at maximizing the cross range,

i.e. maximum latitude. While both time based and energy based approaches were

discussed, results were only presented from the energy based approach. The results

demonstrated the effectiveness of the researcher’s proposed method of “combining the

[MNT] and Eckert’s reference enthalpy method with a pseudospectral optimal con-

trol method” [16]. The optimal heat rate profile calculated with Eckert’s reference

enthalpy method is shown in Figure 22. The heat rate was set as a path constraint

with a maximum value of 7.5× 106 W/m2. Coulter and colleagues stated that their

future work will look to match the dynamic pressure and g-loading models’ fidelity

to that of the heat rate model. Additionally, research will aim to increase the vehicle

model fidelity and incorporate a CFD solver [16].
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Figure 22. Optimal heat rate profile [16].

2.6 Overview

The research effort herein is based off the knowledge and tools discussed through-

out this chapter. The hypersonic trajectory optimization problem is a revived and

growing field of research. Commissioned by AFRL to solve an open ended problem

allowed for the flexibility to try a new methodology via the process of continuation,

further discussed in Chapter III. Continuation is the attempted solution for the chal-

lenge encountered by Lee [41] of convergence issues with GPOPS-II code likely due

to the seed solution provided. From the literature review conducted by this author,

the current research effort is the first effort of implementing continuation for a hy-

personic trajectory optimization problem. While the literature review may not be all

encompassing, additions to the field of hypersonic research are valued by the scientific

community and a national priority [2].
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III. Methodology

This chapter is divided into two sections, with each corresponding to the research

objectives underpinning this thesis. Specifically, the first section corresponds to the

first research objective of utilizing the continuation process for solving a complicated

problem formulation. The second section focuses on the comparison of aerothermo-

dynamic models solved via the continuation method.

3.1 The Process of Continuation

The hypersonic trajectory optimization problem was solved via direct orthogo-

nal collocation methods utilizing the GPOPS-II algorithm while implementing the

method of continuation. The first research objective focuses on solving an optimal

trajectory for maximizing the range of a hypersonic glide vehicle (HGV) during its

glide phase. The characteristics of the chosen vehicle model are utilized in the equa-

tions of motion (EOMs) to provide a more realistic solution. Incorporation of vehicle

characteristics increases the fidelity of the model. For example, calculating lift and

drag require the area of the vehicle. A generic glide vehicle was modeled where the

vehicle’s properties were based on the Common Aero Vehicle [32] and typical lifting

body values. A second HGV was also modeled after the High-speed Army Reference

Vehicle (HARV) [5]. The HARV was chosen because it was created with the mission

of providing a model “suitable for foundational research to allow for focused collab-

oration” [5]. Due to the adaptable nature of the HARV, no aerodynamic tables are

provided with the model. Figure 8, as shown in Section 2.3, illustrates one possible

configuration of the HARV with a conical nose and four tail fins.

g = g0(
Re

r
)2 (23)
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ρ = ρ0 exp
−β(r−Re) (24)

L =
CLV

2ρS

2
(25)

D =
CDV

2ρS

2
(26)

Gravity was calculated as a function of the vehicle’s radial position with Equa-

tion (23) while atmospheric density was calculated with a simple exponential rela-

tionship in Equation (24). Earth’s gravitational constant is g0 and defined as 9.8

m/s2, Re is the Earth’s radius at 6371 km, ρ0 is the density at sea level at 1.225

kg/m3, β is a scale height set at 0.14, S is the wetted area of the vehicle, and V is

the vehicle speed. Atmospheric density was calculated with an exponential model

in Equation (24). The coefficients of lift and drag required for Equations 25 and 26

remained as constants. Lift and drag were calculated with Equations 25 and 26.

For the first few iterations of code using the CAV-inspired HGV model, the coef-

ficient of lift was set to 2 and the coefficient of drag was set to 1. These values were

chosen to represent a lifting body with a L/D that is greater than 1. The mass was

set as 1000 kg and the wetted area, S, as 4.4 m2. The HARV characteristics assumed

a lift coefficient of 0.01 and a drag coefficient of 0.7 due to the vehicle configuration

resembling a missile. These lift and drag values were chosen from common values of

rocket missiles [42]. The mass was set to 150 kg and the wetted area as 2 m2 [43].

The dynamics of the system are represented in the code with first order differential

equations of motion.
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3.1.1 Equations of Motion

The equations of motion are common trajectory reentry equations. The equations

of motion were derived with the following assumptions: a constant Earth rotation ω,

drag parallel and opposite to velocity, lift perpendicular to velocity, and the gravity

vector parallel to the vehicle position vector. The vehicle is modeled as a pseudo-

point mass. In a physical system, the coefficient of lift and drag would be based on

the vehicle’s orientation, however, inclusion of orientation based aerodynamic forces

is beyond the scope of the current investigation. The vehicle was assumed to have

no thrust representing the glide phase of an HGV. The rotation of the Earth was

assumed to be negligible. Neglecting Earth’s rotation is valid due to the difference in

relative speeds between a hypersonic vehicle and the Earth’s rotation. The simplified

3D state dynamics are as follows [44]:

ṙ = V sin(γ) (27a)

θ̇ =
V cos(γ)cos(ψ)

rcos(ϕ)
(27b)

ϕ̇ =
V cos(γ)sin(ψ)

r
(27c)

V̇ = −D
m

− gsin(γ) (27d)

γ̇ =
L

Vm
cos(σ)− g

V
cos(γ) +

V

r
cos(γ) (27e)

ψ̇ =
Lsin(σ)

mcos(γ)V
− V

r
cos(γ)cos(ψ)tan(ϕ) (27f)

where the vehicle’s position vector is r, longitude is θ, latitude is ϕ, speed is V , flight

path angle is γ, and heading angle is ψ. The bank angle is defined as σ. The EOMs

presented are three degree of freedom equations that model vehicle trajectories in

either endo- or exo-atmospheric environments.
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3.1.2 Continuation

Continuation is the method of solving a less complex problem and using its so-

lution to seed a more complicated problem, then using the subsequent solution to

seed an even more complicated problem. The process is repeated until a solution is

found for the problem at the desired level of complexity. Continuation is beneficial

for hypersonic trajectory optimization as complexities can be slowly added into the

problem formulation while maintaining tractable solutions.

Figure 23 shows an overview of the continuation process with the bold yellow text

highlighting the changes between each step. The initial seed fed into the first round

of GPOPS-II code was a Fourth-Order Runge-Kutta (RK4) solution for the generic

hypersonic vehicle, labeled as “Step 0” in Figure 23. The RK4 method is an iterative

method that generates approximate solutions to ordinary differential equations. The

RK4 solution was used as the initial seed due to the method’s simple propagation of

dynamic equations without a cost function, bounds on parameters, path constraints,

or any other limitations. The solution of the first set of GPOPS-II code, referred to as

the GPOPS code-1 and labeled as “Step 1” in the flowchart, was used to seed the next

iteration of the optimal solution. The second iteration of GPOPS-II code, which also

used the generic hypersonic vehicle characteristic data, is referred to as GPOPS code-

2 and labeled “Step 2” in the flowchart. The next iteration of GPOPS-II code, “Step

3”, used HARV characteristic data and is referred to as GPOPS HARV. The specifics

of the GPOPS-II codes are covered in the following section on Problem Formulation.
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Figure 23. An overview of the continuation process.

3.1.3 Problem Formulation

The generic optimal control problem formulation consists of a system modelled

with ordinary differential equations (ODEs), bounds, and a cost function. A cost

function, or performance measure, provides the ability to quantitatively assess a sys-

tem’s performance with respect to a specific performance measure [33]. The goal of

an optimization problem is to find the control that will minimize or maximize the

performance index.

Both GPOPS code-1 and GPOPS code-2 had the same dynamics and vehicle

model. The system was modeled with three-dimensional three degree of freedom (3D

3DOF) EOMs. The states (x) were vehicle position, measured from the center of

the Earth, latitude, longitude, speed, flight path angle, and heading angle. The state

derivatives were described in Equations 27a through 27f.
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x =




r

θ

ϕ

V

γ

ψ




(28)

The control (u) was bank angle.

u = σ (29)

Bounds on the variables in the code for GPOPS code-1 is summarized in Table 3

while Table 4 summarize bounds for GPOPS code-2 and HARV. The altitude bound is

expressed through the vehicle position radius with the lower bound being the Earth’s

radius and the upper bound being the initial radius of the vehicle. For GPOPS code-1,

the upper bound was 100km above the Earth’s radius. Altitude, or vehicle position

radius, was bound to the continuum flow region, assumed to be under 100 km in

altitude, where lift and drag may be calculated using aerodynamic principles.

Table 3. Variable bounds for GPOPS code-1.

Variable Units Min Max
Time (t) seconds 0 7000
Vehicle position radius (r) km 6371 6471
Speed (V) km/s 0.01 8
Longitude (θ) radian -π π
Latitude (ϕ) radian -π/2 π/2
Flight path angle (γ) radian -π/2 π/2
Heading angle (ψ) radian 0 2π
Bank angle (σ) radian -π/3 π/3

The initial vehicle position radius for GPOPS code-1 converged upon 6437 km.
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For GPOPS code-2 and GPOPS HARV, the initial vehicle position radius was fixed

at the converged initial radius in GPOPS code-1 at 6437 km or 66 km in altitude.

Table 4. Variable bounds for GPOPS code-2 and HARV.

Variable Units Min Max
Time (t) seconds 0 7000
Vehicle position radius (r) km 6371 6437
Speed (V) km/s 0.01 8
Longitude (θ) radian -π π
Latitude (ϕ) radian -π/2 π/2
Flight path angle (γ) radian -π/2 π/2
Heading angle (ψ) radian 0 2π
Bank angle (σ) radian -π/3 π/3

The setup of all the GPOPS-II code iterations was configured with the setting options

in Table 5. Details on the settings can be found in the GPOPS-II User Guide [36].

Table 5. GPOPS-II mesh and setup options.

Option Setting

mesh.method hp-PattersonRao

mesh.tolerance 1× 10−4

setup.nlp.solver snopt

setup.scales.method automatic-bounds

setup.method RPM-Integration

The cost function of GPOPS code-1 was maximizing longitudinal range, as a

converged solution could easily be obtained for the continuation process. This cost

function was arbitrarily chosen as a starting point for the optimization algorithm.

Longitudinal range can be found as a cost function in other literature [45][14] as

min
u∗∈U

J = −θ. (30)

No path constraints were enforced during this iteration in Step 1. Table 6 shows

the set up for the initial and final conditions in the problem for GPOPS code-1. The
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initial vehicle radius, latitude, and longitude are left free to allow the algorithm to

converge on an optimal starting position for the given cost function. The final latitude

and longitude was set to the coordinates of the Kwajalein Atoll US military base in

the Marshall Islands.

Table 6. Initial and final conditions for GPOPS code-1.

Variable Units Initial Final
Time (t) seconds 0 free
Vehicle position radius (r) km free 6381
Speed (V) km/s free free
Longitude (θ) radian free 2.9274
Latitude (ϕ) radian free 0.1522
Flight path angle (γ) radian free free
Heading angle (ψ) radian free free
Bank angle (σ) radian free free

min
u∗∈U

J = −(x2 − x1)
2 + (y2 − y1)

2 + (z2 − z1)
2 (31)

The cost function for GPOPS code-2, which used the solution from GPOPS code-1

as the initial seed, was maximizing the Euclidean range as shown in Equation (31).

x = rcos(ϕ)cos(θ) (32)

y = rcos(ϕ)sin(θ) (33)

z = rsin(ϕ) (34)

The states were converted into the Cartesian plane with Equations 32-34 and a simple

Euclidean distance was calculated for the cost function. The subscripts 1 and 2 denote

initial and final positions, respectively. Although the Euclidean distance is not a

realizable flight path, it is directly related to the true flight path as described by the

system dynamics. In other words, even though the Euclidean range is not a feasible
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flight path, the trajectory solution will be accurate since the system dynamics are

not violated in the state solution.

For GPOPS code-2 and HARV iterations, in Steps 2 and 3 of Figure 23, no

path constraints were enforced on the system. The initial and final conditions on the

problem for GPOPS code-2 and GPOPS HARV are listed in Table 7. The problem was

free final time, fixed final state, specifically fixing the final radial position, latitude,

and longitude. Additionally, the initial radial position of GPOPS code-2 and GPOPS

HARV was fixed based off the initial radial position of the GPOPS code-1 result

which was 66 km above the Earth’s surface.

Table 7. Initial and final conditions for GPOPS code-2 and HARV.

Variable Units Initial Final
Time (t) seconds 0 free
Vehicle position radius (r) km 6437 6381
Speed (V) km/s free free
Longitude (θ) radian free 2.9274
Latitude (ϕ) radian free 0.1522
Flight path angle (γ) radian free free
Heading angle (ψ) radian free free
Bank angle (σ) radian free free

The goal was to find where the vehicle should start its glide phase to maximize range

given a fixed initial altitude and still achieve the fixed final target. The fixed initial

altitude was arbitrarily chosen as the mission scenario for this research effort.

3.2 Comparing Aerothermodynamic Models

The next step in the continuation process was to include a path constraint on the

stagnation point heat rate calculated with different aerothermodynamic models for

comparison. Three models of similar fidelity were compared: the Chapman model

[6], the Sutton Graves model [7], and the Galman model [8]. Each model calculated

the stagnation point heating rate at the nose throughout the flight path. The ef-
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fective nose radius was 0.03 m. The aerothermodynamic models were set as path

constraints in the system with a limit on the maximum heating rate. Figure 24 is a

progression of Figure 23 which shows each iteration of the continuation process for

the three aerothermodynamic models. Each iteration follows the same logic described

in Section 3.1.2 where the solution of the previous step is the seed for the next step.

Figure 24. Flowchart of the continuation process with aerothermodynamic heating
models.

The heating rate limit, q̇smax, for Step 4 was determined from calculating the

heating rate profile from the GPOPS HARV solution in Step 3 with each method.

The heating rate limits for Steps 5-7 varied across the different aerothermodynamic

models according to the maximum value achieved from each model in Step 4. The

GPOPS-II code and problem formulation for Steps 4-7 maintained the same variable

bounds and set up as the GPOPS HARV code in Step 3, detailed in Section 3.1.3,

with the addition of a path constraint. The lower bound for the path constraint on

q̇smin was set at 0.01 kW/m2. The upper bounds on q̇smax for each iteration in the

continuation process can be found in Figure 24.

The generalized Chapman method calculates stagnation point heating rate with
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Equation (35) where the blue term is the “hot wall correction” term and is frequently

neglected in hypersonic flow due to the freestream enthalpy, h∞, being much larger

than the wall enthalpy (h∞ >> hw) [6] [18].

q̇s =
C√
Rn

(ρ∞)m(V∞)n
(
1− hw

h∞

)
(35)

The constant, C, is derived for the problem and m and n are usually determined by

the planet’s atmosphere. The version of the Chapman equation commonly found in

literature is Equation (36) without the hot wall correction term [18] [6].

q̇s = 1.63× 10−4

(
ρ

Rn

) 1
2

V 3 (36)

Density is defined as ρ, Rn is the effective nose radius, and V is the vehicle speed.

The exponents of 1
2
and 3 correspond to m and n from Equation (35) for Earth.

The Sutton Graves method is very similar in make up to the Chapman method [7]

[18]. Equation (37) is the version used for Earth where the constant was determined

by the planet’s atmosphere.

q̇s = 1.7415× 10−4

(
ρ

Rn

) 1
2

V 3 (37)

The only notable difference between the Chapman model and the Sutton Graves

model is the constant out front which has the units of (kg1/2m2)/s3. Lastly, the final

aerothermodynamic model compared in this research effort was the Galman model [8].

The Galman model was used in an article in 1961 by Barry Galman, which explored

vehicles returning from orbit. The heating rate was calculated using an equation

similar to Equation (38) for the glide portion of the reentry trajectory of a lifting

body.

q̇s = 11.35377 (2Rn)
− 1

2

(
3.18ρ

1
2

) (
V 3.2

)
1× 10−9 (38)
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Equation (38) has been modified so the output is given in SI units of kW/m2. The

same variables are employed for the Galman model as with the Chapman and Sutton

Graves models.

Q =

∫ tf

t0

q̇sdt (39)

The heat load, Q, for the vehicle was also calculated by integrating the heat rate

on the system throughout its trajectory for each aerothermodynamic model with

Equation (39). The integration of the heating rate profile was conducted with the

cumulative trapezoidal numerical integration command in MATLAB.

3.3 Chapter Summary and Expectations

The methods described in this chapter were aimed at demonstrating two research

objectives with the first research objective being the utilization of the continuation

process and the second being the comparison of aerothermodynamic models. To

accomplish the first objective, a simple RK4 solution of a hypersonic glide vehicle

trajectory was the initial seed to the first GPOPS-II problem formulation which had

a cost function of maximizing longitudinal range of a generic HGV. The solution of the

first GPOPS-II solution was used as the seed to the next iteration of code which had

a cost function of maximizing Euclidean range. The solution of maximized Euclidean

range was the seed for the next iteration of code which used a different vehicle model,

the HARV, but still aimed to maximize Euclidean range. To accomplish the second

objective, the HARV solution was used to seed the next iterations of code each with

a path constraint on the stagnation point heating rate on the vehicle’s nose. The

stagnation point heating rate was calculated with three different aerothermodynamic

models and each iteration of code further lowered the maximum heat rate limit. The

heat load of each trajectory with each aerothermodynamic model was also calculated.
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The continuation process is expected to alleviate the challenge of providing GPOPS-

II code with a sufficient guess to solve a complicated problem. Additionally, this

methodology should demonstrate the adaptability of the algorithm paired with the

continuation process. The final range of the solution from Step 3 is expected to be

larger than the range calculated from Step 1. A difference in trajectories and heat-

ing rate profiles are expected between each aerothermodynamic model. Due to the

constants in Equations 36 and 37, a higher maximum heating rate and higher overall

heat load is expected from the Sutton Graves model.
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IV. Results and Analysis

Preamble

The process of continuation was successfully implemented with the GPOPS-II al-

gorithm. All code was written in the MATLAB R2017b software and run on an HP

Elitebook with an Intel Core i7 8th generation processor. Converged solutions were

found for each iteration. The trajectory results differed between each aerothermo-

dynamic model. The expectation of the Sutton Graves model predicting the highest

maximum heat rate and heat load was shown in the results. The lowest heat rate was

found from the converged solution with the Galman model. The results are presented

in two sections that correspond to the organization from Chapter III: the results from

utilizing the continuation process and the comparison of aerothermodynamic models.

The chapter wraps up with an analysis of the presented results.

4.1 Utilizing Continuation

The process of continuation applied to the GPOPS-II algorithm successfully con-

verged on optimal solutions based on the given criteria as indicated by the exit flags of

“0 –finished successfully” and “1 –optimality conditions satisfied” from SNOPT for all

iterations. Figures 25 and 26 clearly show the difference in trajectories between each

iteration of code. The GPOPS-II algorithm is sensitive to the initial seed [37] which

explains the similar graph shapes between the RK4Guess and the GPOPS code-1 so-

lutions since the RK4Guess solution was used as the initial seed for GPOPS code-1.

The trajectories from Steps 0-2 exhibited a traditional skipping trajectory expected

in vehicles with lift-to-drag ratios near or greater than one as was modeled with the

generic HGV model. While the skipping in Step 2, GPOPS code-2, is subdued, it is

still present. As the continuation process progressed to the iteration of the GPOPS
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HARV trajectory, the skipping in the altitude trajectory had been eliminated, as was

observed in Figure 25, since the HARV model had a lift-to-drag ratio set near zero.

Figure 25. Altitude trajectory of hypersonic vehicle.

Figure 26 illustrates that the GPOPS-II codes solved for the optimal initial lat-

itude and longitude for the vehicle to maximize its range while still ending on the

fixed position. The initial latitude and longitude did not reach the bounds of the

variables set in Table 6, indicating that the initial points are optimal for the problem

formulation. GPOPS code-1 resulted in an initial altitude of 66 km, which was then

used as the initial altitude for the next two iterations.

Figure 26 shows the difference in ranges of each iteration. The Euclidean range

was increased 1.6% from 3,342 km in GPOPS code-1 to 3,397 km for GPOPS HARV

through the continuation process. While this may seem like a small increase, it is due

to the fixed initial altitude for GPOPS code-2 and GPOPS HARV. Since the HARV

model had a lift-to-drag ratio of approximately 0.01, the best way to increase range

would have been to start at a higher altitude due to the low amount of lift the vehicle
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can generate. However, for the mission scenario used in this research effort the initial

altitude was fixed for the GPOPS HARV solution and despite a fixed initial altitude,

the algorithm was able to provide a larger Euclidean range. The objective for GPOPS

code-1 was to maximize longitude only. Figure 26 confirms the objective as very little

variation was shown in the latitude direction. With GPOPS code-2, the objective

transitioned to maximize the Euclidean range. The change in latitude was more

significant given the flexibility with the additional dimensions of the cost function.

Finally, when incorporating the HARV data with maximizing Euclidean range, the

largest distance was acquired. Many factors such as the weight and aerodynamic

properties of the vehicle as well as the speed profile of the HARV contributed to its

converged trajectory. A majority of the HARV trajectory was at a higher speed than

the generic HGV solutions as can be observed in Figure 28. The ranges demonstrate

that continuation allowed for a maximum range trajectory solution for the vehicle

specific properties given a generic starting trajectory with a propagated solution.

The control history of the HARV, shown with the purple line in Figure 27, shows

bang-bang control for the entire flight path. Bang-Bang control indicates an optimal

solution. However, bang-bang control is not necessarily a realistic control to imple-

ment in flight. To alleviate this issue, implementing bank angle as a state and bank

angle rate as the control would produce a realizable input for the bank angle of the

vehicle, effectively applying a rate limit.
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Figure 26. Latitude and longitude of vehicle over time.

Figure 27. Control as bank angle of vehicle over time.
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Figure 28. Speed of vehicle over time.

The speed of the vehicle decreased as it approached its final destination for every

iteration as shown in Figure 28 due to the influence of drag. Figure 29 shows each

term of the vehicle acceleration from Equation (27d) for the GPOPS HARV solution

plotted on the same graph. The drag term dominates the change in speed, calculated

with Equation (27d). Evaluating Equation (26) for drag reveals two non-constant

terms: density and speed. Equation (24) for density gives values as expected with

decreased altitudes resulting in exponentially increased density values. Plotting the

V 2ρ term from Equation (26) for drag in Figure 30 illustrates the coupled dynamics.

A parabolic graph is present with a peak when the vehicle is at a speed of 3.4 km/s

and an altitude approximately at 24 km where the density is 4.26 × 107 kg/km3.

These conditions occur around 600 seconds into the trajectory which is also where

the largest deceleration of the vehicle occurs. The steepest slope of the speed graph

for the GPOPS HARV solution can be observed around the 600 second mark in

Figure 28.
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Figure 29. Contribution of Equation (27d) from the GPOPS HARV data.

The significant differences between the simple iterative Runge-Kutta guess and

the follow on optimized solutions shows the power of continuation. The code took

just under 100 seconds to complete all iterations of the continuation process from

Steps 0-3.

4.1.1 Including a Path Constraint

The continuation process was utilized with code that included the addition of a

path constraint. The path constraint was appended on to the GPOPS HARV code to

limit the maximum heating rate of the vehicle trajectory. Steps 4-7 from the flowchart

in Figure 24 used the continuation process, accomplished by incrementally decreasing

the heat rate limit, with the intent of finding the lowest heating rate limit enforceable

that would allow for a converged trajectory. Figures 31 and 32 show the evolution of

the continuation process applied to code with the Chapman model. The lowest heat

rate limit imposed on the system that still resulted in a converged trajectory was

1.63×104 kW/m2 shown with the purple line in Figure 31. The converged trajectory

solution from the higher limit was used to seed the next iteration of code with a lower
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Figure 30. V 2ρ term from Equation (26) for drag with GPOPS HARV data.

heat rate limit.

Figure 31. Stagnation point heating rate profiles of continuation Steps 4-7 calculated
with the Chapman model.

The resulting altitude trajectories from the various heat rate limits are shown

in Figure 32. A longer flight time would be expected to achieve a lower maximum

heat rate from the reasoning that a lower heat rate limit warrants a shallower, and
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therefore, longer glide path. However, the results from GPOPS-II code show the

opposite. With lower heat rate limits, the flight times were reduced. The other

aerothermodynamic models exhibited the same unexpected trend across Steps 4-7 as

well. For the Chapman model, Step 4’s flight time was 737 seconds while Step 7’s

flight time was 558 seconds, around 180 seconds shorter.

Figure 32. Altitude trajectory of continuation Steps 4-7 calculated with the Chapman
model.

The reason for the unexpected steeper trajectories has to do with coupled system

dynamics. Figure 33 shows the speeds of the converged trajectories from Steps 4-7

with the Chapman model. The steeper trajectories like the yellow and purple graphs

of Steps 6 and 7, respectively, observed in Figure 32, reach lower speeds sooner as

observed in Figure 33. Equation (36) for the Chapman model has density and speed

as non-constant terms. Focusing on the speed term, V 3, the following logic can

be reasoned: lower speed values would result in lower heat rate calculations when

using Equation (36). The analysis at the end of Section 4.1 explains how speed

changes which is influenced by coupled dynamics. Density is the other non-constant

term influencing the heat rate calculations in Equation (36) and also has competing
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interests. To decrease speed, density must be increased, but to decrease the heat

rate, density must be decreased. Additionally, to decrease speed, the speed term

in Equation (26) for drag must increase, but to decrease the heat rate, speed must

be decreased. The coupled dynamics are why the peak heat rates occur at some

combination of speed and density. For example, the maximum stagnation point heat

rate from Step 7 with the Chapman model occurs when the vehicle is going 6 km/s

at an approximate altitude of 37 km where the density was 6.40× 106 kg/km3.

Figure 33. Speed history of continuation Steps 4-7 calculated with the Chapman model.

The same iterative continuation process as described for the Chapman model

above was also applied to code with each of the other aerothermodynamic models.

The same analysis was accomplished for each of the other two aerothermodynamic

models as well and the same trends in the data were concluded. The run time for

code of all the iterations from Steps 4-7, with the Chapman model was around 19

seconds, with the Sutton Graves model was approximately 18 seconds, and with the

Galman model was around 14 seconds.
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4.2 Comparing Aerothermodynamic Models

Three aerothermodynamic models were used to calculate the stagnation point

heating rate at the nose of the HARV. Various heating rate limits were imposed on

the system. For comparison, the heating rate for the GPOPS HARV solution, without

any path constraints, was also calculated. A summary of some key data points can

be found in Table 8. The maximum heating rates for the Step 3 GPOPS HARV

solution shown in Figure 34 were 1.694 70 × 104 kW/m2 for the Chapman model,

1.811 70 × 104 kW/m2 for the Sutton Graves model, and 1.649 50 × 104 kW/m2 for

the Galman model. The next iteration, Step 4, used a baseline maximum limit heat

rate chosen for all three models based on the maximum heating rates achieved from

the GPOPS HARV trajectory. The value chosen was 1.80× 104 kW/m2.
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Figure 34. Stagnation point heating rates calculated with each aerothermodynamic
model for the GPOPS HARV solution.

With the heat rate limit set at 1.80×104 kW/m2 for Step 4 for all three aerother-

modynamic models, the maximum heat rate for the solutions with each model is

shown in Figure 35. The maximum heat rate values were 1.6951×104 kW/m2 for the

Chapman model, 1.80× 104 kW/m2 for the Sutton Graves model, and 1.649 80× 104

kW/m2 for the Galman model. The maximum heat rate values for the Chapman

and Galman models were slightly higher (around 0.001%) than the maximum values

achieved in Step 3 due to the heat rate limit being higher.
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Figure 35. Heating rate profile with a maximum heating rate of 1.80× 104kW/m2.

The maximum heat rate limit was decreased through each iteration of the con-

tinuation process for Steps 4-7 to find the lowest heat rate limit with a converged

solution. Figure 36 shows the heat rate from each aerothermodynamic model of the

solution from the last iteration, Step 7. Each model achieved a different maximum

instantaneous heat rate limit with the Galman model having the lowest maximum

heat rate of 1.59 × 104 kW/m2 and the Sutton Graves model having the highest of

1.74×104 kW/m2, around 9% higher. Table 9 was created using the Stefan-Boltzman

Law with Equation (22) in Section 2.5 to find the corresponding surface temperature

for various stagnation point heating rate values [18] [40]. The heat rate values pre-

sented in Table 9 are the maximum heat rate limits chosen for Step 4-7 across all

three aerothermodynamic models.
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Table 9. Corresponding surface temperature values of stagnation point heating rates.

q̇s
(
kW
m2

)
Temperature

(K)

Temperature

(◦C)

1.8e4 4463 4190

1.75e4 4432 4159

1.74e4 4426 4152

1.73e4 4419 4146

1.69e4 4393 4120

1.65e4 4367 4094

1.64e4 4361 4087

1.63e4 4354 4081

1.60e4 4334 4061

1.59e4 4327 4054

As mentioned in Section 2.5, a carbon-carbon composite material would be able to

withstand a maximum heat rate of 4 MW/m2 which corresponds to a maximum tem-

perature around 3000 K. At the lowest heat rate limit of 15.9 MW/m2, the maximum

temperature of 4327 K would be too high. Peak stagnation point heat rates from

other literature are much lower as well. Masternak reported a maximum nose heat

rate of approximately 1.3 MW/m2, reference “Sec 5.2.5” for the problem formulation

in Figure 18 without a temperature path constraint [14]. Meanwhile for the problem

formulation with a temperature constraint of 2255 K, see details in Figure 18 for “Sec

5.2.10”, a maximum nose heat rate of approximately 667 kW/m2 was experienced

[14]. Makkapatti et al. presented results that remained under their maximum heat

rate limit set at 400 kW/m2 [23]. The largest maximum heat rate found from the

literature review conducted in Chapter II was from Coulter et al. with a maximum
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heat rate just under 7.5 MW/m2 [16]. Although reported maximum heat rate values

were higher, it is important to note that the vehicle models represented had higher

lift-to-drag ratios enabling convergence upon different trajectories unattainable by

the HARV model.

Contradictory to the trend found across Steps 4-7 discussed with Figures 31-33,

the results within a step demonstrated that a lower maximum heat rate had a longer

flight time, as expected in Figure 36. Flight time for the solution with the Galman

model was around 580 seconds, while flight time for the system with the Sutton

Graves model was around 540 seconds (approximately 7% less).

Figure 36. Stagnation point heating rate profiles from each aerothermodynamic model
from Step 7, the last iteration in the continuation process.

A shorter flight time would indicate a steeper flight path. The altitude trajectories

of each model from the last iteration are shown in Figure 37. The solution with the

Sutton Graves model, in red, began descending sooner than the other trajectories.

Following the same analysis as made for Figures 31-33, the next step in analysis was

to look at the speed profiles for the systems with each aerothermodynamic model from

Step 7, which are presented in Figure 38. The trend across speeds is also contradictory
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to the findings in Figure 33. However, the analysis and explanation from Section 4.1.1

is still valid. The trend observed in Step 7 across the various aerothermodynamic

models directly highlights the difference between each model. At the same speed,

each model will predict a different stagnation point heat rate on the vehicle nose. For

example, at 5 km/s the vehicles from each system were approximately at 31 km of

altitude but each aerothermodynamic model predicted a different stagnation point

heating rate. The Chapman model predicted 1.44 × 104 kW/m2, the Sutton Graves

model estimated 1.53× 104 kW/m2, and the Galman model approximated 1.37× 104

kW/m2 given the same speed and altitude. The difference between each model is also

why the Galman model was able to meet a lower maximum heat rate limit than the

Sutton Graves model.

Figure 37. Altitude trajectories of Step 7, the last iteration in the continuation process.
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Figure 38. Speed history of Step 7, the last iteration in the continuation process.

A shorter flight time would also indicate a shorter range which is confirmed in

Figure 39. The x-axis progresses with larger range values starting on the left. Ranges

from Steps 3-7 from the continuation flowchart, in Figure 24, are shown for systems

for all three aerothermodynamic models as well as the maximum heat rate values.

As a reminder, while the problem formulation in Step 3 for GPOPS HARV did not

include a path constraint, the heating rate values were calculated post hoc with each

aerothermodynamic model applied to the trajectory solution. The different starting

points of Step 3 calculated with each aerothermodynamic model also clearly show the

differences between each model’s over or under prediction relative to one another as

previously discussed with Figures 37 and 38. Analyzing the Chapman and Galman

lines, the first two data points appear coincident on Figure 39, with the remaining

three points showing a decrease in range. Steps 3 and 4 had very similar values as

shown in the qsmax rows for the Chapman and Galman models in Table 8.
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Figure 39. Euclidean range achieved vs heat rate of each aerothermodynamic model
from each iteration starting with GPOPS HARV.

The difference between ranges achieved in Steps 3 and 7 was around 4% with each

aerothermodynamic model. The general trend from the systems with each aerother-

modynamic model showed that a decreased maximum heat rate limit, i.e. a more

constrained problem, corresponds to a shorter range.

4.2.1 Heat Loads

Heat loads for each trajectory were calculated by integrating the heat rate values

over the flight time. Heat load and heat rate are both important for determining what

temperatures the external material on the vehicle would have to survive. Heat rate

provides the highest amount of heat the material would have to withstand for a brief

moment while heat load is the total amount of energy the material would experience

for the duration of the flight.

Figures 40 and 41 show the heat load on the vehicle for the duration of the flight.

The heat load graphs show steeper increases in heat load accumulation around 600
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seconds in Figure 40 and 450 seconds in Figure 41 which correlated to the peaks in

Figures 35 and 36, respectively. The peak is not as sharp in Figure 36 hence the

smoother curves in 41. The final heat load values for Step 4 solutions were lower in

the Step 7 solutions.

Figure 40. Integrated heat load of each of the three aerothermodynamic models of Step
4 trajectory solutions with a maximum heating rate limit of 1.80× 104 kW/m2.

Figure 41. Integrated heat load of each of the three aerothermodynamic models of Step
7 trajectory solutions with various maximum heating rate limits on each model.
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Figure 42 shows the resulting maximum heat load accumulated at the end of the

flight versus the maximum heat rate the vehicle experienced during its trajectory.

Unsurprisingly, the trajectory solution with the Sutton Graves model had the highest

heat load in the last iteration of the continuation process as well as the highest

maximum heat rate compared to the solutions with the other aerothermodynamic

models. The lowest heat load was experienced by the vehicle trajectory with the

Galman method.

Figure 42. Maximum heat load vs maximum heat rate of each aerothermodynamic
model from each continuation iteration starting with GPOPS HARV (Steps 3-7).

4.3 Analysis

The achievement of a converged solution of a HARV model with a path constraint

from beginning with a simple iterative Runge-Kutta guess shows the power of con-

tinuation. The ranges from each converged trajectory demonstrate that continuation

allowed for a maximum range trajectory solution for the vehicle specific properties

given a generic starting trajectory with a propagated solution. The bang-bang con-
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trol profile of the vehicle bank angle is not feasible to fly, and one method discussed

was to add bank angle as an additional state and make bank angle rate the control,

thereby, imposing a rate limit. The code took just under 120 seconds to complete all

iterations of the continuation process from Step 0-7 regardless of which aerothermo-

dynamic model used to calculate heat rates. In the last iteration, Step 7, a higher

limit on the heat rate with the Sutton Graves model compared to the other models

resulted in the shortest flight time and the shortest range. A higher heat rate limit

resulted in a steeper glide path. The steeper flight path with the HARV model meant

less flight time and therefore, a shorter range than the system with the Galman model

with a longer flight time and longer range. The system with the Galman model re-

sulted in a 7% longer flight time and a 26 km longer range despite being given the

lowest heat rate limit of the three aerothermodynamic models.

The reason the Galman model was able to achieve the lowest maximum heat rate

of the three aerothermodynamic models is because of the model’s under-prediction of

stagnation point heating rates, relatively speaking. The aerothermodynamic models

in this research effort can only be analyzed relative to each other because there is

no experimental data or CFD analysis currently to compare results to. Therefore,

of the three models in this research, the Sutton Graves model over-predicts while

the Galman model under-predicts and the Chapman model gave results consistently

between the two.

The expected result of lowering the maximum heat rate limit was a longer flight

time. However, this was not observed in the results from Steps 4 to 7, for all aerother-

modynamic models. The unexpected results were due to the coupling of several equa-

tions with the largest influence coming from the density and speed variables. The

combination of altitude and speed at 37 km and 6 km/s, respectively, produced the

highest stagnation point heat rates for a 0.03 m radius nose in Step 7 across all
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aerothermodynamic models.

Concluded from the analysis on Figure 39, a trade off is required between range

and maximum heat rate experienced by the vehicle depending on the mission since

lowering the maximum heat rate reduced the flight path range. In regards to heat

load, while Figure 42 showed a trend of a lower maximum heat rate resulting in a lower

maximum heat load, that trend is not necessarily true for every case. There can be a

case where one vehicle has a higher maximum heat rate but a lower maximum heat

load than another vehicle. Finally, through the continuation process, the trajectory

solutions with each aerothermodynamic model experienced decreases in both maxi-

mum heat rates and maximum heat load values through the iterative continuation

process.
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V. Conclusions

5.1 Summary of Research

The recent development of maneuverable hypersonic vehicles has spurred an in-

crease of research in the field. Hypersonic weapons have advantages over traditional

ballistic missiles. Hypersonic weapons are able to maneuver during flight and stay

at lower altitudes which makes detection more challenging when compared to tra-

ditional ballistic trajectories. Direct orthogonal collocation methods were employed

to solve for an optimized hypersonic trajectory via the pseudospectral solver called

GPOPS-II. The process of continuation was applied since the hypersonic trajectory

optimization problem is a complicated problem and the GPOPS-II algorithm requires

a sufficient seed input. Continuation enabled the use of a simple seed and a simple

initial problem that was then propagated to reach the solution for a more complex

problem. The continuation process alleviated the need for providing a sufficient ini-

tial seed to a very complicated problem. Each step in the continuation process was

required to reach the final iteration in this research. Three dimensional (3D), three

degree of freedom (3DOF) equations of motion (EOMs) with the assumptions of no

thrust and a non-rotating Earth were the system dynamics. Bank angle was set as the

control. Converged solutions were produced for the glide phases of two HGVs, one

generic lifting body based on the CAV model and the HARV with the continuation

process.

Iterations of code began with a simple Fourth-Order Runge-Kutta (RK4) itera-

tion of the generic HGV, which was used to seed the first iteration of GPOPS-II code.

The first iteration of GPOPS-II code optimized the trajectory to maximize longitu-

dinal range. The solution was used to seed the next iteration of GPOPS-II code

which optimized its solution to maximize the Euclidean range. The next iteration of
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unconstrained GPOPS-II code presented an optimized solution also to maximize the

Euclidean range with the difference of using HARV characteristics.

The flight path of the solutions with the generic HGV model followed skipping

trajectories, typical of lifting bodies. The influence of the seed was observable with the

similar general shape of the converged solution. Each iteration in the continuation

process showed a perceptible difference between trajectories, observable in Figures

25-28.

The converged solution of the HARV model was used to seed the next iterations of

the continuation process with an appended path constraint on the maximum stagna-

tion point heat rate on the nose of the vehicle. The stagnation point heating rate was

calculated with three aerothermodynamic models of similar fidelity via the Chapman

model, the Sutton Graves model, and the Galman model. Each iteration of the con-

tinuation process decreased the maximum heat rate limit imposed on the vehicle. The

lowest heat rate predictions were from the Galman model while the highest estimates

were from the Sutton Graves model. The Chapman model consistently approximated

heat rate results between the other two models. The lowest heat rate limit achieved

with a converged solution was 15.9 MW/m2 from the system with the Galman model

which corresponds to a temperature of around 4,300 K. Even the lowest achieved

maximum heating rate of 15.9 MW/m2 was an order of magnitude larger than any

maximum heat rate value found in previous literature. However, the HARV vehi-

cle model had a significantly lower lift-to-drag ratio making certain trajectories that

would allow for a lower maximum heat rate value unachievable. One way to reach

lower the heat rate limits would be to model a higher lift-to-drag ratio. The HARV

can be modeled with a higher lift-to-drag ratio using a higher fidelity model. Another

option for modeling a higher lift-to-drag ratio is by choosing a different vehicle model.

Additionally, it is important to acknowledge the inaccuracies of the stagnation point
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heat rate models as discussed in Section 2.2 in work by Bettinger [25]. CFD would

be a helpful realization tool to validate aerothermodynamic model estimates in the

future.

When comparing aerothermodynamic models there was an expectation that a

lower maximum heat rate limit would result in a longer flight time. The logic behind

this expectation was based on the assumption that a lower maximum heat rate limit

would require the vehicle to fly a shallower glide path to its terminal position taking

more time. The analysis of the coupling of systems explained why the results exhibited

a trend contrary to the expectation. Competing interests on the speed and density

variables influenced the convergence.

Finally, heat load from each aerothermodynamic model was calculated by inte-

grating the heat rates across the total flight time. A larger maximum heat rate

corresponded to a larger maximum heat load at the end of the flight across all

aerothermodynamic models with the HARV model. However, a trajectory with a

higher maximum heat rate does not necessarily have to result in a higher overall heat

load. The results presented from this research effort do not encompass all scenarios.

5.2 Research Impact

The largest contribution of this research was demonstrating the utility of the

continuation process exhibited with the ease of implementation of continuation for

various problem formulations. The continuation process alleviated a common issue

of providing the GPOPS-II algorithm with a sufficient guess to a complicated prob-

lem. Solutions to optimal trajectories with HARV data require either an intelligent

guess to initiate the algorithm or utilization of the continuation process. Converged

solutions were achieved for each iteration in the continuation process. The Sutton

Graves model produced the highest, most conservative stagnation point heating rate
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estimates while the Galman model approximated the lowest heat rates. However, all

aerothermodynamic models produced estimations within the same magnitude. There-

fore, without CFD confirmation or another method of validation, a recommendation

cannot be made as to which aerothermodynamic model is more accurate; only the

differences can be stated. The largest takeaway from the results is the demonstration

of the effectiveness of the process of continuation for solving a complicated hypersonic

trajectory optimization problem.

5.3 Future Work

There are many directions that the current research can be taken in. The explo-

ration of various mission scenarios is important to expand the scope of the simulation

tool. Changing and enhancing the system can be accomplished in many ways to in-

clude adding a rate law for a more realistic control history, increasing the fidelity by

adding lift and drag calculations, and extending the problem formulation to include

the launch phase of flight, to name a few. With changes, it is crucial to note the sensi-

tivity of the GPOPS-II algorithm to variable bounds. The effects of minor changes on

variable bounds, whether the bounds are too big or too small, is a commonly encoun-

tered challenge for determining convergence. This challenge can be alleviated with

non-dimensionalization of the problem, although it comes with its own challenges.

While this research effort did not find bounds to be a limiting factor of convergence,

it is a possibility to acknowledge for the future.

5.3.1 Constraints

The next step in research would be incorporating more constraints on the system

to achieve higher fidelity results. The natural progression would be to include higher

fidelity aerothermodynamic models such as Eckert’s reference enthalpy method, as
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mentioned in Section 2.2. Reference enthalpy or reference temperature methods take

into account compressibility effects in a simplified manner via some reference tem-

perature inside the boundary layer [1]. These methods are better suited for slender

bodies [16] and preferred for analysis due to simplicity of application to hypersonic

problems [1]. A CFD analysis, another higher fidelity model, of heating rates and

temperatures at significant points, like maximums, along the flight path would provide

a layer of accuracy and validation. Additionally, the vehicle can experience enormous

forces at high speeds that would need to be constrained to ensure its survival. Load

and dynamic pressure path constraints would address those forces [23]. All afore-

mentioned constraints appended to the system will work to achieve more realistic,

accurate results.

5.3.2 Lift and Drag

Including variable coefficients of lift and drag would increase model fidelity. There

are multiple ways to include non-constant coefficients of lift and drag. The two main

avenues are aerodynamic look-up tables [12] [13] [14] or surface pressure distribution

calculations [15] [16]. Aerodynamic look-up tables can be acquired via empirical data

or from CFD analysis. Empirical data is compiled from flight test data, however,

these aerodynamic look-up tables are only convenient when available. CFD uses

various modeling techniques to calculate and produce the required aerodynamic look-

up tables. However, CFD is computationally expensive. Different methods of varying

fidelities can be used to calculate surface pressure distributions. Lift and drag can be

extracted from the surface pressure distribution equations which can be incorporated

into GPOPS-II and calculated within the code. Since empirical data is not available

for the vehicle models used in this research effort, future work will need to calculate

coefficients of lift and drag.
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5.3.3 Phases of Flight

Finally, expanding the scope of the project to include additional phases of flight

like the launch and terminal phases is another progression. Terminal conditions that

replicate similar values found in missiles should be considered for improving result

accuracy. Additionally, expanding code to incorporate a HCV model would warrant

appending a cruise phase of flight. Cruise and launch phases of flight have different

dynamics which can easily be accommodated with the GPOPS-II algorithm via phas-

ing. Particularly, the addition of a propulsion model is required for the launch and

cruise phases. The end goal of the continuation process is to have a complete feasible

result of the entire flight path of a hypersonic vehicle. This work is important to

furthering the knowledge of hypersonic trajectories and the coordination of various

disciplines.
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Appendix A. Additional Result Plots

Steps 4-7 of Chapman Model

Figure 43. Steps 4-7: Stagnation point heat rate calculated with Chapman model.

Figure 44. Steps 4-7: Altitude trajectories of system with Chapman model.
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Figure 45. Steps 4-7: Speed profiles of system with Chapman model.

Figure 46. Steps 4-7: Vehicle position of system with Chapman model.
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Figure 47. Steps 4-7: Control history of system with Chapman model.

Steps 4-7 of Sutton Graves Model

Figure 48. Steps 4-7: Stagnation point heat rate calculated with Sutton Graves model.
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Figure 49. Steps 4-7: Altitude trajectories of system with Sutton Graves model.

Figure 50. Steps 4-7: Speed profiles of system with Sutton Graves model.
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Figure 51. Steps 4-7: Vehicle position of system with Sutton Graves model.

Figure 52. Steps 4-7: Control history of system with Sutton Graves model.

Steps 4-7 of Galman Model
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Figure 53. Steps 4-7: Stagnation point heat rate calculated with Galman model.

Figure 54. Steps 4-7: Altitude trajectories of system with Galman model.
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Figure 55. Steps 4-7: Speed profiles of system with Galman model.

Figure 56. Steps 4-7: Vehicle position of system with Galman model.
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Figure 57. Steps 4-7: Control history of system with Galman model.
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Appendix B. Exploration of different problem definition in
Step 2

Results of Steps 0-3 with a different problem definition/mission scenario:

• Step 1: free initial states, fixed final

• Modified Step 2: free initial altitude, free initial latitude and longitude, fixed

final

• Modified Step 3: fixed initial altitude from Modified Step 2, free initial lat/lon,

fixed final

Changing Step 2 to allow for a free initial altitude resulted in the converged solution

starting at the upper bound of 100 km in altitude.

Figure 58. Altitude trajectories of modified Steps 0-3.
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Figure 59. Speed profiles of modified Steps 0-3.

Figure 60. Acceleration components of modified Step 3.
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Step 1’s cost function was to maximize the longitudinal range while Modified Step

2’s cost function was to maximize Euclidean range. Modified Step 2, GPOPS code-2,

had a range of 12,190 km which was approximately 265% larger than Step 1’s range

of 3,342 km.

Figure 61. Vehicle position of modified Steps 0-3.

98



Figure 62. Control history of modified Steps 0-3.

Modified Step 3’s stagnation point heat on the HARV nose was calculated with

three aerothermodynamic models. The largest difference in trajectories between Step

3 and Modified Step 3 was the dive just past 500 seconds of flight time. Figure 63

shows a small increase, a bump, in stagnation point heat rate values just past 500

seconds.
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Figure 63. Modified Step 3: stagnation point heat rate on vehicle nose calculated with
three aerothermodynamic models.
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Appendix C. IEEE Conference Paper

Paper submission to the 2023 IEEE Aerospace Conference held in Big Sky, Mon-

tana from March 5th-11th. This annual conference features aerospace experts from

various career fields making headway in research. The conference is aimed at pro-

moting an interdisciplinary knowledge of aerospace systems.
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Abstract—An algorithm was created to optimize trajectories of
hypersonic glide vehicles with selected cost functions by apply-
ing the process of continuation to direct orthogonal collocation
methods. The trajectory was optimized to maximize the range of
launch position given a fixed terminal location. The process of
continuation was used to address the complexity of the model
whereby less complex solutions were used to seed increasing
complex modeling in an iterative fashion. The hypersonic glide
vehicle system dynamics were modeled with three-dimensional,
three degree of freedom equations of motion assuming no thrust
and a non-rotating Earth for the states defined as vehicle ra-
dial position, latitude, longitude, speed, flight path angle, and
heading angle. The control for the system was placed on the
bank angle of the vehicle. The results presented here are the
foundational stages of ongoing research. Use of the continua-
tion method enabled rapid generation of optimized trajectories.
Differences noted between iterations of the continuation process
showed the evolution of vehicle trajectories based on the prob-
lem formulations. The continuation method was demonstrated
as an effective tool for optimization.
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1. INTRODUCTION
In today’s strategic environment, there is an ever-increasing
need for the development of simulation programs to accu-
rately model the maneuverability of high-speed vehicles [1].
Globally, hypersonic vehicle programs have become active
in multiple nations. In the United States, the advancement
of new high-speed maneuverable weapons is part of the
conventional prompt global strike program, which has been
around since the early 2000s [2]. Due to the complexity of
the hypersonic systems and the requirement for testing, near
term deployment is not feasible without accurate and robust
modeling. Hypersonic vehicles fall into three general classes:
ballistic reentry vehicles, glide vehicles, and cruise vehicles.
The difference in trajectories can be observed in Figure 1.
Ballistic missiles follow a parabolic trajectory, with minimal
control and will operate exo-atmospherically, while glide and
cruise vehicles operate endo-atmospherically for the majority

U.S. Government work not protected by U.S. copyright ©2023 IEEE

of their trajectory. Glide vehicles do not utilize propulsion
after launch while cruise vehicles engage in powered flight.
Endo-atmopsheric flight provides an advantage for hyper-
sonic glide and cruise vehicles due to the ability to maneuver
during flight. The maneuverability allows for a broader range
of applications. An endo-atmospheric flight path may result
in delayed detection from a terrestrial based radar due to a
limiting line of sight, as illustrated in Figure 2. A radar would
not detect a low flying vehicle until much later in its flight
path, thus compressing the timeline for any counter measures.

Hypersonic vehicle trajectories are split into three main
phases: launch, midcourse, and terminal. During endo-
atmospheric flight, the same dynamics model may be em-
ployed for all types of hypersonic vehicles. Both the mid-
course and terminal phases are endo-atmospheric for glide
and cruise vehicles. Utilization of the same dynamics model
across different phases and aircraft models allows for flexibil-
ity while using the process of continuation. Continuation is
the process of solving a less complicated problem and using it
as the initial seed to a more complicated problem. Simulated
path trajectory solutions are solved with direct orthogonal
collocation methods which are popular in this field, due to the
ability to easily accommodate multiple phases. For example,
including the launch phase, in addition to the midcourse
and terminal phase, would warrant an additional phase with
different dynamics. Each set of dynamics correlating to each
phase must satisfy continuity of the states, control, and time
for the complete trajecotry through the implementation of
event constraints. Another multi-phase approach may be
considered for a single phase of flight. For example, the
midcourse phase may be divided into segments based on
researcher interest, specific constraints only applicable to a
certain section of the trajectory, or others.

2. BACKGROUND
Research in hypersonic trajectory optimization incorpo-
rates multiple disciplines. Knowledge of hypersonic flow,
aerothermal models, vehicle models, and optimal control
theory among other topics are required. Many different meth-
ods for solving hypersonic trajectories have been explored,
from indirect optimization methods to neural networks [4].
Each has their advantages and short-comings. Deep neural
networks or machine-based learning have shown promise
with viable results [4][5]. The primary issues with machine-
based learning are the time required and the quantity of data
needed to train the algorithm [6]. Any changes to the mission
profile or modifications of the vehicle may require a new set
of training data for the algorithm. Therefore, flexibility is of
paramount importance for a widely applicable program that
can respond to changing circumstance and rapidly generate
new trajectories. One of the challenges of research with
hypersonics is the unique aspects of the flow regime.
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Figure 1: Trajectories of a ballistic missile, a hypersonic
glide vehicle (HGV), and a hypersonic cruise vehicle
(HCV) [3].

Figure 2: Radar detection of a ballistic missile vs a
hypersonic glide vehicle (HGV) [1].

Hypersonic flow fields differ significantly from subsonic and
even supersonic flows. The defining characteristic of hy-
personic flows is that the kinetic energy of the freestream
is large compared to the internal thermodynamic energy of
the fluid particles [7]. Different physical phenomena occur
when the kinetic energy transforms. Anderson [8] identified
several defining phenomena that illustrate the differences
between hypersonic flow and slower flow regimes, among
which include thin shock layers, the entropy layer, viscous
interactions, and high temperature flow. The flow field will
experience high temperatures in the thousands of Kelvin.
At these high temperatures, the flow field’s molecules will
experience chemical reactions and thus be in a chemical
non-equilibrium as well as exciting the internal energies of
the molecules resulting in a thermodynamic non-equilibrium.
The imbalance of internal and translational energies of the
molecules means a hypersonic vehicle will encounter extreme
aerothermodynamic heating.

Another challenge with hypersonic bodies is integrating the
coupled disciplinary sub-systems into a model with con-
straints to produce rapid, robust, and optimal trajectories [9].
Summarized in Figure 3 are two methods for solving optimal
control problems: indirect and direct [10]. The indirect
method solves a two-point boundary value problem by solv-
ing the necessary conditions for optimality. Derivatives for
each condition of optimality must be found to solve a prob-
lem. While indirect methods uses gradient based techniques
to solve for the derivatives, direct methods take advantage of
numerical linear algebra. As the problem’s complexity grows,
the solution for the derivatives for the necessary conditions of
optimality becomes intractable. Therefore, indirect methods
are only feasible for a relatively simple problem and solution
set. In a hypersonic trajectory optimization problem, the
nonlinear system dynamics, constraints, and bounds make
it intractable for using indirect methods. Therefore, direct
methods are necessary for realistic optimal hypersonic tra-
jectory optimization solutions. Direct methods use Gaussian
quadrature, which solves the problem exactly at defined
collocation points. Between those points, the solution is
approximated with Legrange polynomials [11]. Gaussian
quadrature is used to approximate the running cost and is
fundamental to direct collocation methods.

GPOPS-II is a direct orthogonal collocation algorithm that
incorporates a phased structure for the solution based on
different dynamic models or system parameters [12]. Work
by Jorris [13], Masternak [14], and Coulter [9] among others,
used GPOPS II for hypersonic trajectory optimization. The
aforementioned research projects resulted in feasible solu-

Figure 3: Indirect vs direct methods of optimal control
theory [10].

tions. Each had a slight variation on the type of vehicle,
the assumptions implemented on the equations of motion,
and the optimal control problem formulation i.e. the cost
function, bounds, and constraints. The results from such
projects develop intuition for feasible trajectories.

3. METHODS
The hypersonic trajectory problem was solved via direct
orthogonal collocation methods utilizing the GPOPS-II algo-
rithm while implementing the method of continuation. The
project presented in this paper focused on solving an optimal
trajectory for maximizing the range of a hypersonic glide
vehicle (HGV) during its glide phase. The characteristics
of the chosen vehicle model are utilized in the equations of
motion to provide a more realistic solution. Incorporation
of vehicle characteristics increases the fidelity of the model.
For example, calculating lift and drag require the reference
area of the vehicle. This project modeled a generic vehicle
without an engine. The vehicle’s properties were based on the
Common Aero Vehicle [15]. A second HGV was also mod-
eled after the High-speed Army Reference Vehicle (HARV)
[16]. The HARV was chosen because it was created with
the mission of providing a model “suitable for foundational
research to allow for focused collaboration” [16]. Due to
the adaptable nature of the HARV, no aerodynamic tables
are provided with the model. Figure 4 shows one possible
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Figure 4: HARV configuration with a conical nose and
four fins [16].

configuration of the HARV with a conical nose and four tail
fins.

Gravity was calculated as a function of the vehicle’s radial
position while atmospheric density was calculated with a
simple exponential relationship. The coefficients of lift and
drag remained as constants. For the first few iterations of code
using the CAV-inspired model, the coefficient of lift was set to
2 and the coefficient of drag was set to 1. These values were
chosen to represent a lifting body with a L/D that is greater
than 1. The mass was set as 1000 kg and the wetted area as
4.4 m2. The HARV characteristics assumed a lift coefficient
of 0.01 and a drag coefficient of 0.7. These lift and drag
values were chosen from common values of rocket missiles
[17]. The mass was set to 150 kg and the wetted area as 2 m2

[18]. The dynamics of the system are represented in the code
with first order differential equations of motion.

The gravitational acceleration of the vehicle was calculated
with Equation 1. Atmospheric density was calculated with
an exponential model in Equation 2. Lift and drag were
calculated with Equations 3 and 4.

g = g0(
Re

r
)2 (1)

ρ = ρ0 exp
−β(r−Re) (2)

L =
CLV

2ρS

2
(3)

D =
CDV

2ρS

2
(4)

Earth’s gravitational constant, g0, is defined as 9.8 m
s2 , Re is

the Earth’s radius at 6371 km, ρ0 is the density at sea level at
1.225 kg

m3 , β is a scale height set at 0.14, and S is the reference
area of the vehicle.

Equations of Motion

The equations of motion (EOMs) used herein are common
trajectory reentry equations. The equations of motion were
derived with the following assumptions: a constant Earth

rotation ω, drag parallel and opposite to velocity, lift per-
pendicular to velocity, and the gravity vector parallel to the
vehicle position vector. The vehicle is modeled as a pseudo-
point mass. In a physical system, the coefficient of lift and
drag would be based on the vehicle’s orientation, however,
inclusion of orientation based aerodynamic forces is beyond
the scope of the current investigation. The vehicle was
assumed to have no thrust representing the glide phase of an
HGV. The rotation of the Earth was assumed to be negligible.
Neglecting Earth’s rotation is valid due to the difference in
relative speeds between a hypersonic vehicle and the Earth’s
rotation. The simplified 3D equations of motion are as
follows:

ṙ = V sin(γ) (5a)

θ̇ =
V cos(γ)cos(ψ)

rcos(ϕ)
(5b)

ϕ̇ =
V cos(γ)sin(ψ)

r
(5c)

V̇ = −D
m

− gsin(γ) (5d)

γ̇ =
L

Vm
cos(σ)− g

V
cos(γ) +

V

r
cos(γ) (5e)

ψ̇ =
Lsin(σ)

mcos(γ)V
− V

r
cos(γ)cos(ψ)tan(ϕ) (5f)

where the vehicle’s position vector is r, longitude is θ,
latitude is ϕ, speed is V , flight path angle is γ, and heading
angle is ψ. The bank angle is defined as σ.

Continuation

Continuation is the method of solving a less complex problem
and using its solution to seed a more complicated problem,
then using the subsequent solution to seed an even more
complicated problem. The process is repeated until a solution
is found for the problem at the desired level of complexity.
Continuation is beneficial for hypersonic trajectory optimiza-
tion as complexities can be slowly added into the problem
formulation while maintaining tractable solutions.

Continuation was used for this research effort over four
iterations of the problem formulation. The initial seed fed
into the first round of GPOPS-II code was a Fourth-Order
Runge-Kutta (RK4) solution for the generic hypersonic vehi-
cle. The RK4 method is an iterative method that generates
approximate solutions to ordinary differential equations. The
solution of the first set of GPOPS-II code, referred to as the
GPOPS code-1,was used to seed the next iteration of the
optimal solution. The second iteration of GPOPS-II code,
which also used the generic hypersonic vehicle characteristic
data, is referred to as GPOPS code-2. The last iteration of
GPOPS-II code presented in this paper used HARV charac-
teristic data and is referred to as GPOPS HARV. The specifics
of the GPOPS-II codes are covered in the section on Problem
Formulation.

Problem Formulation

The generic optimal control problem formulation consists
of a system modelled with ordinary differential equations
(ODEs), bounds, and a cost function. A cost function, or
performance measure, provides the ability to quantitatively
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assess a system’s performance [11]. The goal of an opti-
mization problem is to find the control that will minimize or
maximize the performance index. The cost function is chosen
either by necessity from the problem or subjectively by the
researcher [11].

Both the GPOPS code-1 and GPOPS code-2 had the same
dynamics and vehicle model. The system was modeled
with three-dimensional three degree of freedom (3D 3DOF)
EOMs, defined in Equations 5a-5f. The states (y) were vehi-
cle position from the center of the Earth, latitude, longitude,
speed, flight path angle, and heading angle.

y =




r
ϕ
θ
V
γ
ψ




(6)

The control (u) was bank angle.

u = σ (7)

Bounds on the variables in the code for the GPOPS code-1,
code-2, and HARV are summarized in Table 1. The altitude
bound is expressed through the vehicle position radius with
the lower bound being the Earth’s radius and the upper bound
being the initial radius of the vehicle. For GPOPS code-1, the
upper bound was 100km above the Earth’s radius. r0 in this
case happened to be 6437 km. Altitude, or vehicle position
radius, was bound to the continuum flow region where lift and
drag may be calculated using aerodynamic principles.

Table 1: Variable bounds for GPOPS code-1, code-2, and
HARV

Variable Min Max
Time (t) - seconds 0 7000
Vehicle position radius (r) - km 6371 r0
Speed (V) - km/s 0.01 8
Longitude (θ) - radian -π π
Latitude (ϕ) - radian -π/2 π/2
Flight path angle (γ) - radian -π/2 π/2
Heading angle (ψ) - radian 0 2π
Bank angle (σ) - radian -π/3 π/3

The setup of all the GPOPS-II code iterations was configured
with the options in Table 2. Details on the settings can be
found in the GPOPS-II User Guide [19].

Table 2: GPOPS-II Mesh and Setup Options

Option Setting
mesh.method hp-PattersonRao

mesh.tolerance 1× 10−4

setup.nlp.solver snopt
setup.scales.method automatic-bounds

setup.method RPM-Integration

The cost function of the GPOPS code-1 code was maximizing
longitudinal range as a converged solution could easily be

obtained for the continuation process. This cost function
was arbitrarily chosen as a starting point for the optimization
algorithm. Longitudinal range can be found as a cost function
in other literature [20][14].

min
u∗∈U

J = −θ (8)

No path constraints were enforced during this iteration. Table
3 shows the set up for the initial and final conditions on the
problem in the GPOPS code-1. The initial vehicle radius,
latitude, and longitude are left free to allow the algorithm to
converge on an optimal starting position for the given cost
function. The final latitude and longitude was set to the
coordinates of the Kwajalein Atoll US military base in the
Marshall Islands.

Table 3: Initial and final conditions for GPOPS code-1

Variable Initial Final
Time (t) - seconds 0 free
Vehicle position radius (r) - km free 6381
Speed (V) - km/s free free
Longitude (θ) - radian free 2.9274
Latitude (ϕ) - radian free 0.1522
Flight path angle (γ) - radian free free
Heading angle (ψ) - radian free free
Bank angle (σ) - radian free free

The cost function for the GPOPS code-2, which used the
solution from GPOPS code-1 as the initial seed, was max-
imizing the Euclidean range as shown in Equation 9. The
states were converted into the Cartesian plane with Equations
10-12 and a simple euclidean distance was calculated for the
cost function.

min
u∗∈U

J = −(x2 − x1)
2 + (y2 − y1)

2 + (z2 − z1)
2 (9)

x = rcos(ϕ)cos(θ) (10)

y = rcos(ϕ)sin(θ) (11)

z = rsin(ϕ) (12)

The subscripts 1 and 2 denote initial and final positions,
respectively. Although the Euclidean distance is not a real-
izable flight path, it is directly related to the true flight path
as described by the system dynamics. In other words, even
though the euclidean range is not a feasible flight path, the
trajectory solution will be accurate since the system dynamics
are not violated in the state solution.

For the GPOPS code-2 and HARV solutions, no path con-
straints were enforced on the system. The initial and final
conditions on the problem for GPOPS code-2 are listed
in Table 4. The problem was free final time, fixed final
state, specifically fixing the final radial position, latitude, and
longitude.

The goal was to find where the vehicle should start its glide
phase to maximize range and still meet the fixed final target.
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Table 4: Initial and final conditions for GPOPS code-2
and HARV

Variable Initial Final
Time (t) - seconds 0 free
Vehicle position radius (r) - km 6437 6381
Speed (V) - km/s free free
Longitude (θ) - radian free 2.9274
Latitude (ϕ) - radian free 0.1522
Flight path angle (γ) - radian free free
Heading angle (ψ) - radian free free
Bank angle (σ) - radian free free

The initial radial position of GPOPS code-2 and GPOPS
HARV was fixed based off the initial radial position of the
GPOPS code-1 result which was 66 km above the Earth’s
surface.

4. RESULTS
The process of continuation applied to the GPOPS algorithm
successfully converged on optimal solutions based on the
given criteria as indicated by the exit flags of “0 – finished
successfully” and “1 – optimality conditions satisfied” from
GPOPS-II for all iterations. Figures 5 and 6a clearly show the
difference in trajectories between each iteration of code. The
GPOPS-II algorithm is sensitive to the initial seed [12] which
explains the similar graph shapes between the RK4Guess and
the GPOPS code-1 since the RK4Guess was used as the initial
seed for the GPOPS code-1. As the continuation process
reaches the GPOPS HARV trajectory, it is seen in Figure
5 the skipping in the path trajectory has been eliminated
since previous iterations had L/D values greater than one to
represent a lifting body, while the HARV data had an L/D
value less than one.

Figure 6a illustrates that the GPOPS-II codes solved for
the optimal initial latitude and longitude for the vehicle to
maximize its range while still ending on the fixed position.
The initial latitude and longitude did not reach the bounds of
the variables set in Table 1, indicating that the initial points
are optimal for the problem formulation. GPOPS code-1
resulted in an initial altitude of 66 km, which was then used
as the initial altitude for the next two iterations.

Figure 6a shows the difference in ranges of each iteration.
Through the continuation process the Euclidean range was
increased from 3,342 km in GPOPS code-1 to 3,397 km
for GPOPS HARV. The objective for GPOPS code-1 was to
maximize longitude only. Figure 6a confirms the objective as
very little variation is shown in the latitude direction. With
GPOPS code-2, the objective transitions to maximize the
Euclidean range. The change in latitude is more significant
given the flexibility with the additional dimensions of the
cost function. Finally, when incorporating the HARV data
with maximizing Euclidean range, the largest distance was
acquired. Many factors such as the weight and aerodynamic
properties of the vehicle as well as the speed profile of the
HARV contributed to this final trajectory. A majority of the
HARV trajectory was at a higher speed than the generic HGV
solutions as can be observed in Figure 6c. Mainly, the ranges
demonstrate that continuation allowed for a maximum range
trajectory solution to the vehicle specific properties given a
generic starting trajectory with a propagated solution.

The control history of the HARV, shown with the purple line

in Figure 6b, shows bang-bang control for the entire flight
path. Bang-Bang control indicates an optimal solution. How-
ever, bang-bang control is not necessarily a realistic control
to implement in flight. To alleviate this issue, implementing
bank angle as a state and bank angle rate as the control would
produce a realizable input for the bank angle of the vehicle,
effectively applying a rate limit.

The speed of the vehicle decreased as it approached its final
destination for every iteration as shown in Figure 6c due to the
influence of drag. Figure 7 shows each term of the vehicle
acceleration, Equation 5d, for the GPOPS HARV solution
plotted on the same graph. The drag term dominates the
change in speed, calculated with Equation 5d. Approximately
600 seconds into the trajectory, the drag is seen to increase
as the vehicle approaches the Earth’s surface due to the
increased density, calculated with Equation 2.

The significant differences between the simple iterative
Runge-Kutta guess and the follow on optimized solutions
shows the power of continuation. The code took just under
100 seconds to complete all iterations of the continuation pro-
cess on an HP Elitebook with an Intel Core i7 8th generation
processor.

5. CONCLUSION
The recent development of maneuverable hypersonic vehicles
has spurred an increase of research in the field. Hypersonic
weapons have advantages over traditional ballistic missiles.
Hypersonic weapons are able to maneuver during flight and
stay at lower altitudes which makes detection more challeng-
ing when compared to traditional ballistic trajectories. Direct
orthogonoal collocation methods were employed to solve for
an optimized hypersonic trajectory via the pseudospectral
solver called GPOPS-II. The process of continuation was
applied since the hypersonic trajectory optimization problem
is a complicated problem and the GPOPS-II algorithm re-
quires a sufficient seed input. Continuation enabled the use
of a simple seed and a simple initial problem that was then
propagated to reach the solution for a more complex problem.

Two HGVs were modeled in the continuation process to
accomplish the converged trajectory of the HARV model.
Converged solutions were produced for the glide phases of
two HGVs, one generic lifting body based on the CAV model
and the HARV, both without constraints. Three dimensional
(3D), three degree of freedom (3DOF) equations of motion
(EOMs) with the assumptions of no thrust and a non-rotating
Earth were the system dynamics. Bank angle was set as the
control.

Iterations of code began with a simple Fourth-Order Runge-
Kutta (RK4) iteration of the generic HGV, which was used to
seed the first iteration of GPOPS-II code. The first iteration of
GPOPS-II code optimized the trajectory to maximize longitu-
dinal range. The solution was used to seed the next iteration
of GPOPS-II code which optimized its solution to maximize
the Euclidean range. The last iteration of GPOPS-II code
presented an optimized solution to maximize the Euclidean
range with the difference of using HARV characteristics.
Converged solutions were achieved for each iteration in the
continuation process. The flight path of the generic HGV
followed a skipping trajectory, typical of lifting bodies. The
influence of the guess fed into the code was observable with
the general shape of the solution. Each iteration in the con-
tinuation process showed a perceptible difference. The final
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Figure 5: Altitude trajectory of hypersonic vehicle.

(a) Latitude and longitude of vehicle over time.
(b) Control as bank angle of vehicle over time.

(c) Speed of vehicle over time.

Figure 6: Results of trajectories of the vehicle position (a), control (b), and speed profile (c).

solution compared to the initial RK4 guess was noticeably
different. The results in Figures 5 and 6 show promise for
future use of continuation.

The largest contribution of this research was demonstrating
the utility of the continuation process. This effort exhib-

ited the ease of implementation of continuation for various
problem formulations. The continuation process alleviated
a common issue of providing the GPOPS-II algorithm with
a sufficient guess to a complicated problem. Solutions to
optimal trajectories with HARV data require either an intelli-
gent guess to initiate the algorithm or utilizing the method of
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Figure 7: Each component of Equation 5d from the GPOPS HARV data.

continuation.

6. FUTURE WORK
There are many directions that the current project can be
taken in. Some of these include adding a rate law for a more
realistic control history, increasing the fidelity by adding lift
and drag calculations, and extending the scope to include the
launch phase of flight, to name a few. It is also important
to note the sensitivity of the GPOPS-II algorithm to variable
bounds. A common challenge encountered are the effects of
minor changes on variable bounds, whether the bounds are
too big or too small, being the reason for convergence. This
problem can be eliminated with non-dimensionalization of
the problem. While this research effort did not find bounds
to be a limiting factor of convergence, it is important to
acknowledge for the future.

Constraints

The next step in research would be incorporating constraints
on the system to achieve higher fidelity results. The temper-
atures experienced by a vehicle during hypersonic flight are
extreme and must be modeled. The project aims to compare
the resultant trajectory with the implementation of various
aerothermal heating models. The aerothermal models will
be incorporated as path constraints with a maximum heat flux
not to be exceeded. Chapman [21], Sutton-Graves [22], and
Galman [23] equations are three simple heat flux equations
that are comparable. A higher fidelity aerothermal heating
model would be Eckert’s reference enthalpy.

Reference enthalpy or reference temperature methods take
into account compressibility effects in a simplified manner
via some reference temperature inside the boundary layer
[8]. These methods are better suited for slender bodies [9]
and preferred for analysis due to simplicity of application to
hypersonic problems [8].

Additionally, the vehicle can experience enormous forces at
high speeds that would need to be constrained to ensure its
survival. Load and dynamic pressure path constraints would
address those forces [24]. All aforementioned constraints
appended to the system will work to achieve more realistic
results.

Lift and Drag

Including variable lift and drag values would increase model
fidelity. There are multiple ways to include non-constant
lift and drag. The two main avenues are aerodynamic look-
up tables [13] [25] [14] and surface pressure distribution
calculations [26] [9]. Aerodynamic look-up tables can be
acquired via empirical data or from CFD analysis. Empirical
data is compiled from flight test data. Empirical look-
up tables are convenient but only when available. CFD
analysis is another method to achieve aerodynamic look-up
tables. CFD uses various modeling techniques to calculate
and produce the required look-up tables. Different equations
of varying fidelities can be used to calculate surface pressure
distributions. Lift and drag can be extracted from the surface
pressure distribution equations which can be incorporated
into GPOPS-II and calculated within the code. Since em-
pirical data is not available for the vehicle models used in
this research effort, future work will include lift and drag
calculations with a surface inclination method called Lee’s
Modified Newtonian Method (MNT).

Phases of Flight

Finally, expanding the scope of the project to include addi-
tional phases of flight like the launch and terminal phases
is another progression. Additionally, incorporating a cruise
phase of flight can be achieved. These phases of flight
have different dynamics which can easily be accommodated
with the GPOPS-II algorithm. Particularly the addition of
a propulsion model is required for the launch and cruise
phases. The end goal of the continuation process is to
have a complete feasible result of the entire flight path of a
hypersonic vehicle. This work is important to furthering the
knowledge of hypersonic trajectories and the coordination of
various disciplines.

ACKNOWLEDGMENTS
The authors thank the Air Force Research Laboratory for
funding this project.

REFERENCES
[1] K. M. Sayler, “Hypersonic weapons: Background and

issues for Congress,” Key Congressional Reports for

7



July 2019. Part I, pp. 161–194, 2019.
[2] A. F. Woolf, “Conventional prompt global strike and

long-range ballistic missiles: Background and issues
(updated),” Key Congressional Reports for August
2019: Part IX, pp. 181–264, 2020.

[3] S. R. Aarten, “The Impact of Hypersonic Missiles on
Strategic Stability,” De militaire spectator, pp. 182–193,
2020.

[4] Y. Shi and Z. Wang, “A deep learning-based approach
to real-time trajectory,” pp. 1–19, January 2020.

[5] K. Sachan and R. Padhi, “Nonlinear robust neuro-
adaptive flight control for hypersonic vehicles with state
constraints,” Control Engineering Practice, vol. 102,
August 2020.

[6] X. Hui, C. Guangbin, Z. Shengxiu, Y. Xiaogang, and
H. Mingzhe, “Hypersonic reentry trajectory optimiza-
tion by using improved sparrow search algorithm and
control parametrization method,” Advances in Space
Research, vol. 69, no. 6, pp. 2512–2524, 2022.

[7] J. J. Bertin, Hypersonic Aerothermodynamics. Wash-
ington, D.C.: American Institute of Aeronautics and
Astronautics Conference, 1994.

[8] J. D. Anderson Jr., Hypersonic and High Temperature
Gas Dynamics, 2nd ed., Reston, 2006.

[9] B. Coulter, Z. Wang, D. Huang, and Y. Yao,
“Hypersonic trajectory optimization with high-fidelity
aerothermodynamic models,” AIAA Scitech 2021 Fo-
rum, pp. 1–17, January 2021.

[10] D. A. Benson, G. T. Huntington, T. P. Thorvaldsen, and
A. V. Rao, “Direct trajectory optimization and costate
estimation via an orthogonal collocation method,” Col-
lection of Technical Papers - AIAA Guidance, Naviga-
tion, and Control Conference 2006, vol. 4, pp. 2731–
2744, August 2006.

[11] D. E. Kirk, Optimal Control Theory: an introduction.
Mineola: Dover Publications, Inc., 1998.

[12] M. A. Patterson and A. V. Rao, “CGPOPS: A C++
Software for Solving Multiple-Phase Optimal Control
Problems Using Adaptive Gaussian Quadrature Col-
location and Sparse Nonlinear Programming,” ACM
Transactions on Mathematical Software, vol. 41, no. 1,
2014.

[13] T. R. Jorris, “Common aero vehicle autonomous reentry
trajectory optimization satisfying waypoint and no-fly
zone constraints,” 2007.

[14] T. J. Masternak, “Multi-Objective Trajectory Optimiza-
tion of a Hypersonic Reconnaissance Vehicle with Tem-
perature Constraints,” AFIT Dissertations and Theses,
June 2014.

[15] M. A. Dunkel, “The impact of atmospheric fluctuation
on optimal boost hypersonic vehicle dynamics,” The Air
Force Institute of Technology, 2017.

[16] J. D. Vasile, F. Fresconi, J. Despirito, M. Duca, T. Rec-
chia, B. Grantham, D. W. Rodney, and E. B. White,
“High-Speed Army Reference Vehicle,” 2022.

[17] Woodbank Communications Ltd, “Simple missile bal-
listics, orbits and aerodynamics,” 2005.

[18] US Air Force. AIM-120 AMRAAM.
Accessed on January 2023. [Online].
Available: https://www.af.mil/About-Us/Fact-
Sheets/Display/Article/104576/aim-120-amraam/

[19] M. A. Patterson and A. V. Rao, “GPOPS-II manual:
A General-Purpose MATLAB Software for Solving
Multiple-Phase Optimal Control Problems Version 2.3,”
pp. 1–72, December 2016.

[20] G. Duan, Y. Sun, M. Zhang, Z. Zhang, and X. Gao,
“Aerodynamic coefficients models of hypersonic vehi-
cle based on aero database,” Proceedings - 2010 1st In-
ternational Conference on Pervasive Computing, Signal
Processing and Applications, PCSPA 2010, pp. 1001–
1004, 2010.

[21] G. T. Chapman, “Theoretical Laminar Convective Heat
Transfer and Boundary-Layer Characteristics on Cones
at Speeds to 24 km/sec,” Ames Research Center, Mof-
fett Field, CA, Tech. Rep. NASA TN D-2463.

[22] K. Sutton and R. A. Graves, Jr., “A General Stagnation-
Point Convective-Heating Equation for Arbitrary Gas
Mixtures,” NASA Langley Research Center, Hampton,
VA, Tech. Rep. NASA TR R-376, November 1971.

[23] B. A. Galman, “Some Fundamental Considerations For
Lifting Vehicles in Return From Satellite Orbit,” Plane-
tary and Space Science, vol. 4, pp. 399–410, 1961.

[24] V. R. Makkapati, J. Ridderhof, P. Tsiotras, J. Hart,
and B. Van Bloemen Waanders, “Desensitized Tra-
jectory Optimization for Hypersonic Vehicles,” IEEE
Aerospace Conference Proceedings, vol. 2021-March,
2021.

[25] L. G. Hood, G. Bennett, and J. J. Parish, “Model fidelity
studies for rapid trajectory optimization,” AIAA Scitech
2019 Forum, January 2019.

[26] S. R. Kadam and H. B. Hablani, “Trajectory optimiza-
tion of reentry capsule,” IFAC Proceedings Volumes
(IFAC-PapersOnline), vol. 3, pp. 68–74, 2014.

BIOGRAPHY[

Noor Khan received her B.S. degree
in aeronautical engineering USAFA. She
graduated in 2021 and continued to
pursue a higher education by attending
AFIT. She is currently a graduate stu-
dent at AFIT working on obtaining her
master’s degree from the Dept of Aero-
nautics and Astronautics. After graduate
school, she will be headed to pilot train-
ing.

Michael Zollars received a B.S. in Me-
chanical Engineering from the Pennsyl-
vania State University in 2003 and an
M.S. and PhD in Aeronautical Engineer-
ing from the Air Force Institute of Tech-
nology in 2007 and 2018 respectively.
He is a professor with the Department
of Aeronautics and Astronautics at the
Air Force Institute of Technology. His re-
search interests include optimal control

for vehicle trajectory analysis and dynamics and control of
aircraft systems.

8



Robert MacDermott received a B.S.
in Aerospace Engineering from Purdue
University in 2005 and an M.S. and
PhD in Aeronautical Engineering from
the Air Force Institute of Technology in
2012 and 2021 respectively. He is an
assistant professor with the Department
of Aeronautics and Astronautics at the
Air Force Institute of Technology. His re-
search interests include experiment and

computational investigations of hypersonic phenomena.

9



Bibliography

1. Anderson Jr., J. D., Hypersonic and High Temperature Gas Dynamics , Reston,

2nd ed., 2006.

2. Sayler, K. M., “Hypersonic weapons: Background and issues for Congress,” Key

Congressional Reports for July 2019. Part I , 2019, pp. 161–194.

3. Woolf, A. F., “Conventional prompt global strike and long-range ballistic missiles:

Background and issues (updated),” Key Congressional Reports for August 2019:

Part IX , 2020, pp. 181–264.

4. Aarten, S. R., “The Impact of Hypersonic Missiles on Strategic Stability,” De

militaire spectator , 2020, pp. 182–193.

5. Vasile, J. D., Fresconi, F., Despirito, J., Duca, M., Recchia, T., Grantham, B.,

Rodney, D. W., and White, E. B., “High-Speed Army Reference Vehicle,” 2022.

6. Chapman, D. R., “An Approximate Analytical Method for Studying Entry into

Planetary Atmospheres,” Tech. Rep. NACA TN 4276, NACA, Washington, May

1958.

7. Sutton, K. and Graves, Jr., R. A., “A General Stagnation-Point Convective-

Heating Equation for Arbitrary Gas Mixtures,” Tech. Rep. NASA TR R-376,

NASA Langley Research Center, Hampton, VA, November 1971.

8. Galman, B. A., “Some Fundamental Considerations For Lifting Vehicles in Return

From Satellite Orbit,” Planetary and Space Science, Vol. 4, 1961, pp. 399–410.

9. Rizvi, S. T. u. I., shu He, L., and jun Xu, D., “Optimal trajectory and heat load

analysis of different shape lifting reentry vehicles for medium range application,”

Defence Technology , Vol. 11, No. 4, 2015, pp. 350–361.

111



10. Bertin, J. J., Hypersonic Aerothermodynamics , American Institute of Aeronautics

and Astronautics Conference, Washington, D.C., 1994.

11. Anderson Jr., J. D., Modern Compressible Flow , McGraw Hill Inc., New York,

1982.

12. Jorris, T. R., “Common Aero Vehicle Autonomous Reentry Trajectory Optimiza-

tion Satisfying Waypoint and No-fly Zone Constraints,” 2007.

13. Hood, L. G., Bennett, G., and Parish, J. J., “Model fidelity studies for rapid

trajectory optimization,” AIAA Scitech 2019 Forum, January 2019.

14. Masternak, T. J., “Multi-Objective Trajectory Optimization of a Hypersonic Re-

connaissance Vehicle with Temperature Constraints,” AFIT Dissertations and

Theses , June 2014.

15. Kadam, S. R. and Hablani, H. B., “Trajectory optimization of reentry capsule,”

IFAC Proceedings Volumes (IFAC-PapersOnline), Vol. 3, 2014, pp. 68–74.

16. Coulter, B., Wang, Z., Huang, D., and Yao, Y., “Hypersonic Trajectory Opti-

mization with High-Fidelity Aerothermodynamic Models,” AIAA Scitech 2021

Forum, January 2021, pp. 1–17.

17. Lees, L., “Hypersonic Flow,” Journal of Spacecraft and Rockets , Vol. 40, No. 5,

2003, pp. 700–735.

18. Wright, M. and Dec, J., “Aerothermodynamic and Thermal Protection System

Aspects of Entry System Design Course,” NASA Thermal and Fluids Analysis

Workshop, Pasadena, 2012.

19. Royal Society of Chemistry, “Periodic Table,” 2022.

112



20. Grant, M. J. and Antony, T., “Rapid Indirect Trajectory Optimization of a Hy-

pothetical Long Range Weapon System,” AIAA Atmospheric Flight Mechanics

Conference, January 2016.

21. Hellman, B. M., “Trajectory Approaches for Launching Hypersonic Flight Tests,”

AIAA SPACE 2014 Conference and Exposition, 2014.

22. Hui, X., Guangbin, C., Shengxiu, Z., Xiaogang, Y., and Mingzhe, H., “Hypersonic

Reentry Trajectory Optimization by Using Improved Sparrow Search Algorithm

and Control Parametrization Method,” Advances in Space Research, Vol. 69,

No. 6, 2022, pp. 2512–2524.

23. Makkapati, V. R., Ridderhof, J., Tsiotras, P., Hart, J., and Van Bloemen Waan-

ders, B., “Desensitized Trajectory Optimization for Hypersonic Vehicles,” IEEE

Aerospace Conference Proceedings , Vol. 2021-March, 2021.

24. Rexius, S. L., Rexius, T. E., Jorris, T. R., and Rao, A. V., “Advances in highly

constrained multi-phase trajectory generation using the General Pseudospec-

tral Optimization Software GPOPS,” AIAA Guidance, Navigation, and Control

(GNC) Conference, , No. 412, 2013, pp. 1–16.

25. Bettinger, R. A., “The Prospect of Responsive Spacecraft Using Aeroassisted,

Trans-Atmospheric Maneuvers,” AFIT Scholar , June 2014.

26. Cummings, R. H., Mason, W. H., Morton, S. A., and McDaniel, D. R., Applied

Computational Aerodynamics , Cambridge University Press, New York, 2015.

27. Weiland, C., Aerodynamic Data of Space Vehicles , Springer, Berlin, 2014.

28. Science Museum Group Collection, “Apollo 10 command module,” Accessed on

September 2022.

113



29. National Air and Space Museum, “North American X-15,” Accessed on Septem-

ber 2022.

30. Hollis, B. R. and Borrelli, S., “Aerothermodynamics of Blunt Body Entry Vehi-

cles,” Progress in Aerospace Sciences , Vol. 48-49, 2012, pp. 42–56.

31. Dalle, D. J., “Interactions between Flight Dynamics and Propulsion Systems of

Air-Breathing Hypersonic Vehicles,” AFIT Dissertations and Theses , 2013.

32. Dunkel, M. A., “The Impact of Atmospheric Fluctuation on Optimal Boost Hy-

personic Vehicle Dynamics,” The Air Force Institute of Technology , 2017.

33. Kirk, D. E., Optimal Control Theory: an introduction, Dover Publications, Inc.,

Mineola, 1998.

34. Betts, J. T., “Survey of Numerical Methods for Trajectory Optimization,” Jour-

nal of Guidance, Control, and Dynamics , Vol. 21, No. 2, 1998, pp. 193–207.

35. Benson, D. A., Huntington, G. T., Thorvaldsen, T. P., and Rao, A. V., “Di-

rect trajectory optimization and costate estimation via an orthogonal collocation

method,” Collection of Technical Papers - AIAA Guidance, Navigation, and Con-

trol Conference 2006 , Vol. 4, August 2006, pp. 2731–2744.

36. Patterson, M. A. and Rao, A. V., “GPOPS-II manual: A General-Purpose MAT-

LAB Software for Solving Multiple-Phase Optimal Control Problems Version 2.3,”

December 2016, pp. 1–72.

37. Patterson, M. A. and Rao, A. V., “CGPOPS: A C++ Software for Solving

Multiple-Phase Optimal Control Problems Using Adaptive Gaussian Quadrature

Collocation and Sparse Nonlinear Programming,” ACM Transactions on Mathe-

matical Software, Vol. 41, No. 1, 2014.

114



38. Karasz, W. J., “Optimal Re-entry Trajectory Terminal State Due to Variations

in Waypoint Locations,” March 2008.

39. Scott, C. D., Ried, R. C., Maraia, R. J., Li, C.-P., Derry, S. M., Scott, C. D.,

Robert, C., Li, C.-p., and Derryo, S. M., “An AOTV Aeroheating and Thermal

Protection Study,” AIAA 19th Thermophysics Conference, 1984.

40. Rizvi, S. T. U. I., Linshu, H., and Dajun, X., “Optimal trajectory analysis of

hypersonic boost-glide waverider with heat load constraint,” Aircraft Engineering

and Aerospace Technology , Vol. 87, No. 1, 2015, pp. 67–78.

41. Lee, C. J., “Hypersonic Vehicle Control and Trajectory Determination Through

the Application of Artificial Intelligence,” March 2020.

42. Woodbank Communications Ltd, “Simple Missile Ballistics, Orbits and Aerody-

namics,” 2005.

43. US Air Force, “AIM-120 AMRAAM,” Accessed on January 2023.

44. Hicks, K. D., Introduction to Astrodynamic Reentry , Air Force Institute of Tech-

nology, 2009.

45. Duan, G., Sun, Y., Zhang, M., Zhang, Z., and Gao, X., “Aerodynamic coeffi-

cients models of hypersonic vehicle based on aero database,” Proceedings - 2010

1st International Conference on Pervasive Computing, Signal Processing and Ap-

plications, PCSPA 2010 , 2010, pp. 1001–1004.

115



REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704–0188

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including
suggestions for reducing this burden to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704–0188), 1215 Jefferson Davis Highway,
Suite 1204, Arlington, VA 22202–4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection
of information if it does not display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD–MM–YYYY) 2. REPORT TYPE 3. DATES COVERED (From — To)

4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

6. AUTHOR(S)

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION REPORT
NUMBER

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION / AVAILABILITY STATEMENT

13. SUPPLEMENTARY NOTES

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF:

a. REPORT b. ABSTRACT c. THIS PAGE

17. LIMITATION OF
ABSTRACT

18. NUMBER
OF
PAGES

19a. NAME OF RESPONSIBLE PERSON

19b. TELEPHONE NUMBER (include area code)

Standard Form 298 (Rev. 8–98)
Prescribed by ANSI Std. Z39.18

23–03–2023 Master’s Thesis Sept 2021 — Mar 2023

DIRECT METHODS FOR COMPARISON OF
AEROTHERMODYNAMIC MODEL EFFECTS ON HYPERSONIC

TRAJECTORY OPTIMIZATION BY THE CONTINUATION
PROCESS

Khan, Noor K, 2nd Lt, USAF

Air Force Institute of Technology
Graduate School of Engineering and Management (AFIT/EN)
2950 Hobson Way
WPAFB OH 45433-7765

AFIT-ENY-MS-23-M-278

DISTRIBUTION STATEMENT A:
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

An algorithm was created to optimize trajectories of hypersonic glide vehicles with selected cost functions by applying
the process of continuation to direct orthogonal collocation methods. The trajectory was optimized to maximize the
range of launch position given a fixed terminal location. The hypersonic glide vehicle system dynamics were modeled
with three-dimensional, three degree of freedom equations of motion assuming no thrust and a non-rotating Earth with
the control as bank angle. Three aerothermodynamic models were compared when input as path constraints to calculate
the stagnation point heating rate at the nose as well as integrated for heat load. Use of the continuation method enabled
rapid generation of converged optimized trajectories. Differences noted between iterations of the continuation process
showed the evolution of vehicle trajectories based on the problem formulations. The continuation method was
demonstrated as an effective tool for optimization. Each aerothermodynamic model rendered a different optimal
trajectory with the Sutton Graves model producing the most conservative heat flux and heat load estimates.

hypersonic trajectory optimization, direct orthogonal collocation methods, psuedospectral methods, GPOPS-II,
continuation process, aerothermodynamic models, stagnation point heating rate, hypersonic glide vehicle (HGV)

U U U UU 133

Lt Col Michael Zollars, AFIT/ENY

(937) 255-3636; michael.zollars@afit.edu


	Direct Collocation Methods for Comparison of Aerothermodynamic Models Effect on Hypersonic Trajectory Optimization by the Process of Continuation
	Recommended Citation

	Abstract
	List of Figures
	List of Tables
	List of Abbreviations
	List of Symbols
	Introduction
	Motivation
	Problem Description
	Research Hypothesis
	Research Tasks
	Research Objectives
	Assumptions
	Document Overview

	Background
	Hypersonic Flow
	Aerothermodynamic Models
	Vehicle Models
	Optimal Control Theory
	Optimal Control Problem Formulation
	Direct Collocation Methods
	GPOPS-II

	Previous Work
	Overview

	Methodology
	The Process of Continuation
	Equations of Motion
	Continuation
	Problem Formulation

	Comparing Aerothermodynamic Models
	Chapter Summary and Expectations

	Results and Analysis
	Utilizing Continuation
	Including a Path Constraint

	Comparing Aerothermodynamic Models
	Heat Loads

	Analysis

	Conclusions
	Summary of Research
	Research Impact
	Future Work
	Constraints
	Lift and Drag
	Phases of Flight


	Additional Result Plots
	Exploration of different problem definition in Step 2
	IEEE Conference Paper
	Bibliography

