
Air Force Institute of Technology Air Force Institute of Technology

AFIT Scholar AFIT Scholar

Theses and Dissertations Student Graduate Works

3-2023

Improving Accessibility and Efficiency of Analytic Provenance Improving Accessibility and Efficiency of Analytic Provenance

Tools for Reverse Engineering Tools for Reverse Engineering

Caleb W. Richardson

Follow this and additional works at: https://scholar.afit.edu/etd

 Part of the Computer Sciences Commons

Recommended Citation Recommended Citation
Richardson, Caleb W., "Improving Accessibility and Efficiency of Analytic Provenance Tools for Reverse
Engineering" (2023). Theses and Dissertations. 7028.
https://scholar.afit.edu/etd/7028

This Thesis is brought to you for free and open access by the Student Graduate Works at AFIT Scholar. It has been
accepted for inclusion in Theses and Dissertations by an authorized administrator of AFIT Scholar. For more
information, please contact AFIT.ENWL.Repository@us.af.mil.

https://scholar.afit.edu/
https://scholar.afit.edu/etd
https://scholar.afit.edu/graduate_works
https://scholar.afit.edu/etd?utm_source=scholar.afit.edu%2Fetd%2F7028&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/142?utm_source=scholar.afit.edu%2Fetd%2F7028&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.afit.edu/etd/7028?utm_source=scholar.afit.edu%2Fetd%2F7028&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:AFIT.ENWL.Repository@us.af.mil

IMPROVING ACCESSIBILITY AND
EFFICIENCY OF ANALYTIC PROVENANCE

TOOLS FOR REVERSE ENGINEERING

THESIS

Caleb W. Richardson, 2nd Lieutenant, USAF
AFIT-ENG-MS-23-M-054

DEPARTMENT OF THE AIR FORCE
AIR UNIVERSITY

AIR FORCE INSTITUTE OF TECHNOLOGY
Wright-Patterson Air Force Base, Ohio

DISTRIBUTION STATEMENT A
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

The views expressed in this document are those of the author and do not reflect the
official policy or position of the United States Air Force, the United States Department
of Defense or the United States Government. This material is declared a work of the
U.S. Government and is not subject to copyright protection in the United States.

AFIT-ENG-MS-23-M-054

IMPROVING ACCESSIBILITY AND EFFICIENCY OF ANALYTIC

PROVENANCE TOOLS FOR REVERSE ENGINEERING

THESIS

Presented to the Faculty

Department of Electrical and Computer Engineering

Graduate School of Engineering and Management

Air Force Institute of Technology

Air University

Air Education and Training Command

in Partial Fulfillment of the Requirements for the

Degree of Master of Science in Computer Science

Caleb W. Richardson, B.S.C.S.

2nd Lieutenant, USAF

March 2023

DISTRIBUTION STATEMENT A
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

AFIT-ENG-MS-23-M-054

IMPROVING ACCESSIBILITY AND EFFICIENCY OF ANALYTIC

PROVENANCE TOOLS FOR REVERSE ENGINEERING

THESIS

Caleb W. Richardson, B.S.C.S.
2nd Lieutenant, USAF

Committee Membership:

Lt Col Wayne C. Henry, Ph.D.
Chair

Dr. Gilbert Peterson, Ph.D.
Member

Dr. Robert Mills, Ph.D.
Member

AFIT-ENG-MS-23-M-054

Abstract

Reverse engineering is a vital technique for identifying and mitigating cyber

threats. Yet, despite its importance, reverse engineering is a time-consuming process.

Provenance tools help to improve the workflow of reverse engineers by providing an

accessible method of viewing their flow through a binary. The current state-of-the-

art provenance tool for reverse engineering software called SensorRE, leverages an

external server, web browser, and a large array of javascript libraries.

This thesis presents Provenance Ninja, a software reverse engineering tool devel-

oped in Python that runs directly within Binary Ninja. Provenance Ninja captures

reverse engineers’ provenance data and provides an interactive graph within the re-

verse engineering environment. The performance of Provenance Ninja is evaluated

against SensorRE by measuring functionality and efficiency. This research demon-

strates that it is possible to design a provenance tool to run natively in the reverse

engineering software that passes all functionality tests when compared to SensorRE

and shows statistically significant efficiency improvements at a 95% confidence level

in memory utilization and runtime from this approach. The results of this study con-

tribute to the field of software reverse engineering and have the potential to enhance

the effectiveness of cyber threat mitigation efforts.

iv

AFIT-ENG-MS-23-M-054

To my parents who inspire me to work harder every single day and become the best

possible version of myself.

v

Table of Contents

Page

Abstract . iv

I. Introduction . 1

1.1 Problem Background . 1
1.2 Problem Statement . 2
1.3 Approach . 3
1.4 Assumptions . 4
1.5 Document Overview . 4

II. Background and Literature Review . 6

2.1 Overview. 6
2.2 Sensemaking . 6
2.3 Software Reverse Engineering . 7

2.3.1 Static Analysis . 8
2.3.2 Dynamic Analysis . 9
2.3.3 Sensemaking in Reverse Engineering . 9

2.4 Visualization in Analytics . 10
2.5 Designing Tools and Evaluations around Requirements 13

2.5.1 Qualitative Evaluations . 13
2.5.2 Quantitative Evaluations . 14
2.5.3 Evaluation Tools . 16

2.6 Provenance . 16
2.7 Implementation Technologies . 17
2.8 Background Summary . 18

III. Design and Methodology . 19

3.1 Overview. 19
3.2 System Summary . 19
3.3 System Description . 20

3.3.1 Constructing the Provenance Graph . 21
3.3.2 Capturing Input . 22
3.3.3 Undo . 23
3.3.4 Verbose Mode and Collapsing the Graph . 24

3.4 Tools and Implementation Requirements . 25
3.5 Usage Scenario . 25
3.6 Experiment Hypothesis . 29
3.7 Functionalitity Testing Setup . 31

3.7.1 Function Test . 32
3.7.2 Variable and Type Test . 32

vi

Page

3.7.3 Comments and Highlighting Test . 33
3.8 Experimental Design Setup . 34

3.8.1 Response Time . 34
3.8.2 Memory Usage . 35
3.8.3 Choice of Statistical Test . 35

3.9 Ensuring Isolation . 35
3.10 Randomization and Threats to Validity . 36
3.11 Methodology Summary . 37

IV. Results and Analysis . 38

4.1 Overview. 38
4.2 Functionality Testing . 38
4.3 Performace Testing . 39

4.3.1 Gathering Data . 40
4.3.2 Memory Analysis Results and Observations 42
4.3.3 Runtime Analysis Results and Observations 45

4.4 Results Summary . 47

V. Conclusions . 48

5.1 Research Contributions . 48
5.2 Research Limitations . 49
5.3 Future Work. 49
5.4 Concluding Thoughts . 50

Appendix A. Software Listings . 52

Bibliography . 83

vii

IMPROVING ACCESSIBILITY AND EFFICIENCY OF ANALYTIC

PROVENANCE TOOLS FOR REVERSE ENGINEERING

I. Introduction

Reverse engineering is a crucial technique for identifying and mitigating cyber

threats. It involves analyzing the structure and function of software and hardware

systems to understand how they work and identify vulnerabilities. The ability to

understand and exploit the inner workings of a system is essential for identifying and

addressing cyber threats. The importance of reverse engineering in cybersecurity is

recognized at the national level, as evidenced by legislation such as the Cybersecurity

Information Sharing Act (CISA) and executive orders such as Executive Order 13636,

which emphasizes the need for increased cybersecurity in critical infrastructure [1, 2,

3]. Through reverse engineering, organizations and governments can better protect

themselves and the nation from foreign cyber threats by identifying and addressing

vulnerabilities in software and systems.

1.1 Problem Background

Reverse engineering is the process of analyzing and understanding the design,

structure, and functionality of a given software program. This process is often used

to identify and repair vulnerabilities, improve performance, or extract proprietary

information from a program. However, this process can be time-consuming and chal-

lenging, particularly for large and complex software programs.

One of the key challenges in reverse engineering is understanding the flow of data

and interactions within a binary. Analytic provenance is a technique that addresses

1

this challenge by providing an accessible method of viewing the flow of data and

interactions during analysis. However, despite the growing recognition of their im-

portance, there are still limitations in the current state-of-the-art tools.

A systematic study by Perez, et al. [4] found that computational overhead and

integration are significant open problems for provenance tools. Classical provenance

data techniques and methods are usually data-intensive and time-consuming [5, 6].

While computational overhead in a reverse engineering context is not often considered

a limitation, minimizing collection overhead during workflow execution could have a

significant impact across a large user base. Furthermore, the reliance on external

dependencies can make the tools less accessible, particularly to those working in

restricted environments or with limited internet connectivity. These issues highlight

the need for a more efficient and accessible solution that can improve the workflow

effectiveness of reverse engineers.

SensorRE was developed to support the provenance needs of software engineers

during binary analysis [7]. While SensorRE was the first provenance tool for reverse

engineers, it is reliant on a multitude of javascript libraries, an external browser, and

a server in order to operate with the reverse engineering tool Binary Ninja. This

research addresses these limitations.

1.2 Problem Statement

This research addresses the limitations of current state-of-the-art analytic prove-

nance tools in the context of reverse engineering. Specifically, this research develops a

provenance plugin that runs directly within Binary Ninja, a popular reverse engineer-

ing tool, and evaluates its performance and effectiveness in comparison to SensorRE,

an analytic provenance reverse engineering tool. The objectives of this research are

to minimize collection overhead during workflow execution, increase accessibility, and

2

reduce dependency on external servers and web browsers. This research divides its

core task into two primary objectives.

1. To design and develop a fully featured reverse engineering provenance tool as a

Binary Ninja plugin, Provenance Ninja.

2. To evaluate the performance of Provenance Ninja in terms of memory efficiency

and speed compared to SensorRE.

The first part involves the development of the plugin itself. Provenance Ninja is the

first provenance tool developed natively within Binary Ninja. This bears the unique

challenge of determining how to best display a provenance graph in this environment.

After that, the next objective is to determine if this plugin is more efficient than

SensorRE. Memory efficiency is measured by recording which programs have their

memory affected by each plugin and observing whether Provenance Ninja improves

upon the benchmarks of SensorRE. Speed is tracked through the runtime of the

plugin. This metric relates to how long it takes from when an action is taken to when

it shows up on the graph.

1.3 Approach

The approach of this research is divided into two main phases: development and

evaluation. In the development phase, the primary objective is to design and imple-

ment a fully-featured reverse engineering provenance tool as a Binary Ninja plugin.

The first step in this process is to develop a proof of concept, demonstrating that a

more extensive provenance tool can be accomplished. This proof of concept is used

to guide the development of the full-fledged plugin. A core design decision during

development is the focus on keeping as many of the features present in SensorRE as

possible. At the same time, the plan is to expand and evolve those features, utilizing

3

the rich features in the latest Binary Ninja API.

In the evaluation phase, the newly developed plugin is compared against Sen-

sorRE to gauge improvements in memory utilization and response times. This is

done by comparing the performance of the two tools on a set of tests that simu-

late reverse engineering tasks. This experiment assesses how much more efficient and

faster Provenance Ninja is compared to SensorRE and provides insight into the gained

improvement from developing a reverse engineering provenance tool as a Binary Ninja

plugin.

1.4 Assumptions

In this research effort, it is assumed that the Binary Ninja application is the pri-

mary reverse engineering tool of interest for developing and testing the provenance

plugin. This assumption is based on the existing provenance tool, SensorRE, which

was designed for Binary Ninja. Thus, utilizing the same reverse engineering software

simplifies the testing process and reduces the potential for confounding variables.

Additionally, it is assumed that the primary performance metrics of interest for eval-

uating the plugin are memory utilization and response time. These metrics were

chosen for their straightforward method of measurement, reducing the potential for

confounding variables that could complicate the testing data.

1.5 Document Overview

This chapter presents the research problem, objectives, and approach for this the-

sis. Chapter 2 provides an overview of reverse engineering, provenance, and how the

two work together to improve the workflow of reverse engineers. Chapter 3 describes

the methodology of how Provenance Ninja is designed and outlines how it is evaluated

against SensorRE. Chapter 4 presents the result of the evaluation and analyzes the

4

results in terms of accessibility and efficiency. Finally, Chapter 5 summarizes the

research contributions and provides potential future avenues for research.

5

II. Background and Literature Review

2.1 Overview

This chapter provides a comprehensive overview of the key concepts and technolo-

gies that form the foundation of this research. The chapter begins by discussing the

importance of sensemaking in software reverse engineering, followed by an in-depth

analysis of the key concepts and techniques used in software reverse engineering.

Next, the chapter describes various visualization techniques that are commonly used

in analytics and the design of tools for evaluating them. The chapter then provides a

detailed overview of the concepts of provenance and the implementation technologies

used in this research.

2.2 Sensemaking

Everyone has a different way of processing and understanding information. One

person may look at visualization and interpret it slightly or entirely differently than

the next person. Understanding sensemaking is the key to ensuring that as many

people as possible can extract the core meaning of a medium.

Sensemaking can be defined as “a dynamic process of building or revising an

explanation in order to ‘figure something out’ to ascertain the mechanism underlying

a phenomenon in order to resolve a gap or inconsistency in one’s understanding” [8].

It is how we build a bridge between what we don’t know by using what we already

know. This process is described by Pirolli and Card as one that can either occur

top-down, or bottom-up [9]. In the case of visualization, the bottom-up sensemaking

process is used because a viewer is extrapolating a theory from presented data.

This process has five steps. First, a viewer searches and filters the data they

are presented with. Then they read that filtered content and extract evidence and

6

inferences. Next, a person classifies the data into some sort of schematic, whether it

be a mental model or a computer-generated graph. Based on that graph, they then

construct a theory that affirms or dissuades their current hypothesis. Finally, they

utilize this whole process to present a story (to a client, for example) about what

they have concluded [9].

2.3 Software Reverse Engineering

Software reverse engineering is a field in which engineers deconstruct a program

to discover how it works. Members of this field are dedicated to “understanding how

the program uses the system interface, understanding the program’s functions and

instruction-level information, and how the program uses data” [10]. Whereas, when a

developer compiles a program, they aim for it to work without the user ever question-

ing the behind-the-scenes code of the software. Engineers utilize reversing techniques

to accomplish everything from vulnerability detection to malware detection, and neu-

tralization to protecting intellectual property [7].

Traditionally engineers approach the reversing process in two phases: information

extraction and abstraction [11]. However, more recently, the process has been broken

down into four steps: asking questions, simulating answers to those questions, rec-

ognizing new information based on the simulations, then deciding where to further

investigate the source code based on that information [12]. First, reverse engineers

ask questions to understand how a program operates and hypothesize about the pro-

gram’s core functionality. This phase is conducted at a high level of abstraction.

Then they simulate the software by running the program, using static and dynamic

analysis, or combining both. Next, a user extracts information based on observa-

tions during the analysis phase. Finally, based on that information, they perform

more static/and or dynamic analysis as necessary. Throughout these steps, the core

7

techniques used are static and dynamic analysis.

2.3.1 Static Analysis

Static analysis involves observing program code structure to determine its function

[13]. This process consists of viewing information about a program without actually

running it. Engineers commonly utilize hex editors, decompilers, and disassemblers

during this phase [7]. While static analysis is a powerful tool, it can potentially be

less effective against more complex programs and miss important functionality [13].

Commonly used static analysis tools include IDA Pro [14], Binary Ninja [15], and

Ghidra [16]. All three of these allow a reverse engineer to analyze the assembly code of

the program they are deconstructing in an easy-to-read manner. Below is an example

of Binary Ninja in Figure 1. These tools also support plugins that allow developers

to enhance the effectiveness of reverse engineers.

Figure 1: A model reverse engineering workspace within Binary Ninja

8

2.3.2 Dynamic Analysis

Dynamic analysis is predicated on observing the behavior of a program during its

runtime [13]. An engineer can obtain even more information about a program using

this analysis. In addition to simply running the program, dynamic instrumentation

tools and vitalized environments aid engineers in dynamically analyzing software [7].

Together static and dynamic analysis are powerful methods of determining the func-

tionality of a program.

Tools such as x32dbg [17] and OllyDbg [18] are the most commonly used for

dynamic analysis, as well as the debugger built into IDA Pro. This category of

tools grants the reverse engineer the capability to step through a program during its

runtime and view how various registers within memory are affected by a program’s

function. Much like static analysis tools, these debuggers also support plugins.

2.3.3 Sensemaking in Reverse Engineering

In the realm of reverse engineering specifically, sensemaking is “goal-directed plan-

ning” to generate a hypothesis and seek information related to that hypothesis within

the context of analyzing software [19]. This type of sensemaking follows a similar pro-

cess as shown in Figure 2.

Figure 2: Sensemaking Steps in a Reverse Engineering Environment [20].

9

Approaching the overall goal, a reverse engineer’s mission is to develop a mental

model of the program they are analyzing. To begin, they must picture the end goal

they are seeking and create sub-goals that will aid them along that path. Once

those are established, an engineer develops plans for achieving each sub-goal. These

goals come together to give information about the program’s properties, system calls,

sequence of calls used, important instruction groups, what each function does, and

how functions work together. The combination of these results helps the reverse

engineer learn how data flows through the program. This knowledge develops into a

mental model of the program.

In completing each subgoal, a reverse engineer will often repeat the cycle shown

to the left of Figure 2. They first construct a hypothesis based on the current in-

formation available. Based upon that, they then construct a goal representation of

testing that hypothesis, plan its approach, and carry out the plan. Executing the plan

involves sensing and interpreting information and updating their knowledge accord-

ingly. Once new knowledge enters the picture, the cycle continues with the reverse

engineer creating new hypotheses based upon their continual knowledge gain until

the goal has been met.

2.4 Visualization in Analytics

Within both the realms of static and dynamic analysis, reverse engineers have tools

that aid them in effectively and efficiently analyzing software. These tools include

various amounts of detail and visual aids that combine to provide a holistic view of a

program’s inner workings [7]. Within these tools exist many ways of visualizing the

program the engineer is analyzing. These tools are highlighted below in Figure 3.

10

Figure 3: Visualization Plugins for Reverse Engineering Tools [21, 22, 23, 24, 25, 7]

Gaasdelen developed Lighthouse as a plugin for IDA Pro and Binary Ninja. This

tool allows reverse engineer execution maps for programs [21]. Its coverage painting

feature enables a view of coverage data across the disassembly and graph views on

both IDA Pro and Binary Ninja, and the decompiler view for IDA Pro [21]. A widget

11

that docks to the engineer’s view provides this visualization once it loads the coverage

[21].

Sourcery Pane, a tool designed for Binary Ninja by a developer who goes by

mechanicalnull, enables a reverse engineer to have a synchronized view of their disas-

sembly and the source code if the source is available [22]. Sourcery Pane was created

to visually clarify how source code links to the disassembled code.

Bncovis a scriptable interface developed for Binary Ninja, by the company ForAllSe-

cure, provides coverage information [23]. With this tool, a reverse engineer can view

a color-coded map that displays which code sections are covered by the most traces.

This allows a reverse engineer to determine a program’s functionality efficiently. Ad-

ditionally, Bncovis allows scripting so users can directly interact with the plugin’s

data structures [23].

Katai provides a visualization tool for hexdumps where a reverse engineer can

more easily dissect a binary file. Developed for Binary Ninja by Vector35, this plugin

enables a reverse engineer to have a tree view of a program’s hex dump [24].

Developer Borzacchiello designed BNCallgraph for Binary Ninja as a simple way

to view the callgraph of a function [25]. This tool can construct both callgraphs and

reverse callgraphs, enabling a reverse engineer to follow the flow of the function they

are analyzing and its references. Furthermore, BNCallgraph colorizes the branches of

the graph to enhance its interpretation.

Finally, SensorRE is a plugin for Binary Ninja supporting analytic provenance.

That displays a user’s provenance history and allows them to recall, replicate and

recover actions that they have taken [7]. This tool also uniquely enables reverse

engineers to reproduce and present their findings through its storyboard feature.

12

2.5 Designing Tools and Evaluations around Requirements

There are several methods of evaluating tools that help reverse engineers. Re-

search has been conducted on how to best aid reverse engineers in their analytics,

which fundamentally drives the reasoning for developing tools and plugins to aug-

ment those tools. Researchers have used both qualitative and quantitative methods

in evaluations.

2.5.1 Qualitative Evaluations

One such study by Truede, et al. [26] breaks down the fundamental processes in

reverse engineering and the challenges that reverse engineers have in each of those

processes. This evaluation was conducted by interviewing engineers and gathering

data from a group of structured questions. These questions allowed the researchers

to gather data about the most useful tools for reverse engineers and the largest hurdles

in utilizing those tools to create a more efficient work environment [26].

Baldwin, et al. conducted a case study on reverse engineers approaching the

problem from a psychological frame of reference [27]. They then use the case study

results to rank what they determine to be the premier problems surrounding reverse

engineers. For this study, questions were asked to two different groups to elicit a

holistic survey. The answers from each group were then given a specific point value

that was used to order the most important requirements for reverse engineers [27].

Another study by Pirolli and Card interviewed intelligence analysts to find out

how they organize information [9]. These findings gave critical insight into engineers’

schemes during their analysis. From there, they delved into improving analytics

production based on the engineers’ responses [9].

Henry interviewed reverse engineers to determine how their current tools could

be specifically amplified to aid them in their work. The areas that were focused on

13

in this study were metadata analysis, disassembly analysis, dynamic analysis, docu-

mentation, and collaboration. This study showed the primary needs which needed to

be met in developing a provenance tool for binary analysis [7].

2.5.2 Quantitative Evaluations

While other evaluations focus more on quantitative analysis, Maletic proposes the

notion of specific tasks that visualization must meet, as shown in Figure 4 [28].

Figure 4: A Reference Model for Visualization [28]

All visualization efforts begin with raw data. This data is then transformed into

data tables. Because these tables may not be straightforward for a human to perceive

a visualization, they serve to map that data into a visual structure. This is the first

requirement of a visualization. Additionally, it must also provide a method for inter-

acting with that data. When visualization is broken down into certain conditions it

must meet, it opens the possibility of quantitatively testing them through developing

a series of benchmarks [28]. While Maletic does not offer a specific set of benchmarks

14

for all visualizations, they mention that these criteria will vary between each visual

mapping based on how it structures its given data.

Globus and Uselton approach the evaluation of visualization software quantita-

tively at a high-level [29]. They propose different possible methods of evaluating

visualization software beyond interviewing human subjects. These metrics include

accuracy, scalability, completeness, its ability to be distributed, size efficiency, time

efficiency, and currency. Yet, they also note that the end goal of any visualization is

to improve the user experience and that this may require some qualitative analysis

to thoroughly test efficacy [29].

Gazis and Katsiri have recently proposed a method to evaluate visualizations

based on performance metrics [30]. These benchmarks assess CPU performance

through user, system, CPU, and wall time and memory availability during the visual-

ization’s runtime. For this evaluation, the tests were performed on a web application

and were compared on different frameworks [30].

In reverse engineering, Kienle and Muller evaluate what reversing tools are needed

for static and dynamic analysis using quantitative methods [31, 32]. Another study

identifies the quality attributes to measure for a software visualization as scalability,

interoperability, customizability, interactivity, usability, and adaptability [31]. They

then apply these metrics to reverse engineering tools by thoroughly defining what

each of those means in the context of a reversing program. This study acknowledges

that the evaluation of a tool through human studies is also an essential part of tool

development, but not until the benchmarks have first been evaluated in the tool’s

development [32].

15

2.5.3 Evaluation Tools

Evaluating the metrics presented by Gazis can be executed using various tools.

User and system CPU values and memory efficiency can be measured utilizing the

built-in Windows Task Manager, Process Explorer [33], or Performance Monitor [34].

These tools can provide detailed information on the CPU and memory usage of specific

processes, including the private working set, virtual memory size, and page file usage.

Another way to compare memory efficiency is to use a specialized memory profiler

tool such as memprofiler [35]. Memprofiler tracks memory usage, memory leaks, and

CPU usage over time. Through this, you can measure and compare the amount

of memory used by each application during specific tasks or operations and track

changes in memory usage over time. One could also track the number of page faults

that occurred to get an idea of the efficiency of memory management.

Wall time, also called runtime, can be measured by leveraging the system clock to

measure the time between two actions occurring. This can be accessed from within

the code in a given system and printed to the console. The system clock time can

be printed before and after a given action, allowing the tester to calculate the total

runtime manually. Alternatively, calculations can occur within the code and print

the total runtime to the console.

2.6 Provenance

When presenting the model that an analyst has reached through sensemaking,

it is often helpful to be able to detail how they reached that model. This is where

provenance comes into play. Provenance is the history of a given object and, in a

scientific sense, is “the sequence of steps that led to a result” [36]. In the realm of

computing, provenance is “a record of past execution (or current execution)” that

leads to a given piece or set of data [37].

16

There are six key reasons why an analyst might desire provenance data as outlined

by Ragan, et al. [38]. First, it is essential for recall so that an analyst can look back

on work done and remember how they reached their conclusions. Replication is also

necessary, as engineers might need to recreate work they have previously done to

verify their findings. Action recovery involves being able to undo or redo steps taken

along the process, and this is another practical reason to have provenance data. An

analyst may also desire this information if they collaborate with others and need

a straightforward manner of guiding someone else through the same sensemaking

process. Taking that one step further, if they are presenting this data in any way,

being able to display provenance information aids their audience in understanding

the analyst’s thought process. Finally, this data is also helpful for meta-analysis of

various trends that might show themselves throughout an engineer’s work, allowing

them to optimize their efforts [38].

Provenance data can be sorted into two categories. Data provenance relates to

how raw data changes and moves [38]. This is most commonly used in fields with large

amounts of data to peruse and analyze. Analytic provenance centers around exploring

that data and deriving conclusions about what the data represents [7]. Visualizations

of reverse engineering data most closely align with this category.

2.7 Implementation Technologies

There are many methods through which analytic provenance data could be incor-

porated into the reverse engineering process. Binary Ninja is the platform that has

been previously targeted for the implementation of this data into the disassembly

phase. This platform was chosen due to its rich application programming interface

(API) support and its extensive library of external plugins, as highlighted previously.

SensorRE was the first application to support provenance for reverse engineering

17

[7]. This program did so through a web application platform attached to the Binary

Ninja disassembly interface. This enabled scalable vector graphics (SVG) to cre-

ate more dynamic graph features than would be available in a stand-alone graphing

environment.

Another option for implementing such a plugin is utilizing the PySide6 library to

create a graph directly within Binary Ninja [39]. This implementation would allow

a user to run a provenance tool while using Binary Ninja without having a separate

server or web browser running. This should decrease the memory load on the system.

Additionally, because inputs do not have to travel through an external server, the

response time for updating nodes on the graph should be faster.

2.8 Background Summary

This chapter overviewed software reverse engineering and its most commonly used

tools. It also introduced sensemaking and provenance as methods of interpreting the

analytic data gathered through reverse engineering efforts and presenting that infor-

mation to others. Finally, it explored implementation options for efficiently displaying

that data for the analyst.

18

III. Design and Methodology

3.1 Overview

Provenance tools are helpful for reverse engineers in their day-to-day tasks. Pre-

vious research focused on designing an external plugin to support this need. While

this solution works well, this research explores a potentially more efficient method of

designing a provenance system, one built directly into the Binary Ninja interface.

This chapter introduces Provenance Ninja, the first analytic provenance tool de-

signed directly within Binary Ninja. Provenance Ninja displays a provenance graph

in a snappable pane within the Binary Ninja environment. The design and implemen-

tation of the plugin are described, followed by a usage scenario. Finally, the means

of testing and evaluating the system are presented.

3.2 System Summary

Provenance Ninja is designed to keep the features of SensorRE without requiring

a web browser or internet server. Since Binary Ninja only supports Python plugins,

the code has to be written solely in Python.

This plugin captures user input in the Binary Ninja interface and then displays

that information on a provenance graph. The graph is a widget that can be moved

around and scaled within the user’s workspace. Aside from running the plugin at

the beginning of their session, this tool causes little to no additional work on the

reverse engineer’s part as it does all of the capturing and displaying automatically.

The system diagram for Provenance Ninja can be seen in Figure 5.

19

Figure 5: Provenance Ninja System Diagram

3.3 System Description

Provenance Ninja is a Python-based analytic provenance tool. It enables real-time

viewing of the changes made to a binary within the Binary Ninja environment. The

design of this system is largely modeled after SensorRE, beginning with its core fea-

tures: provenance display and capture. Each poses unique challenges due to designing

the plugin entirely in Python without a JavaScript module.

20

3.3.1 Constructing the Provenance Graph

The visualization utilizes a tree graph constructed using the PySide6 library [39],

where nodes represent actions taken by the user. This Python library provided func-

tionality for several core features. PySide’s rich interaction with the native Binary

Ninja dock handler is why this library was selected for the plugin. The PySide6

QWidget library is utilized to create a separate window in the user interface in which

the plugin resides.

Within this window, a section is added for a graph where users can view their

provenance changes in real time. Because of the inherent modularity within the

PySide6 widgets, this allows for selection from a wide variety of graphing libraries for

the actual graph itself. One such library is the FlowGraph library, which is directly

within the Binary Ninja API [15]. To construct the graph itself, first, an array is

created to store the nodes. When the plugin calls for the graph to be updated, it

adds all the nodes in this array to the graph, regardless of which branch contains

which node. Branches are then defined by the edges drawn between each node. A

loop ran through each branch and added its corresponding edges to the graph. Finally,

the graph is displayed for the user.

Specific nodes and lines are stylized differently to make the graph simpler for

users to view. The current node is always green. Because commenting is one of the

most commonly utilized tools when analyzing a binary, they are also distinguished.

Comments along the active branch, excluding the current node, are colored blue to

be easily identifiable. For a user to quickly recognize which actions represent the

current state of the binary, the active branch is indicated with solid green arrows,

and previous branches use dotted white arrows.

21

3.3.2 Capturing Input

Nodes on the aforementioned graph are populated by user input. Actions the user

conducts within Binary Ninja are tracked and subsequently displayed. Upon receiving

a notification that a change has been made within the Binary Ninja environment, the

plugin filters the change by multiple types of actions. The actions that trigger a node

in the graph are:

• Data Written

• Function Added

• Function Removed

• Function Updated

• Variable Added

• Variable Removed

• Type Defined

• Type Undefined

Once the appropriate input type is determined, a node representing that input is

sent to the graph, and the graph is updated. An example of such a graph after a user

has added two comments can be seen in Figure 6. As mentioned before, the current

node is green, and the previously made comment node is blue.

22

Figure 6: Provenance Graph Representing Added Comment

3.3.3 Undo

Another feature of Provenance Ninja is the ability to undo specific previous ac-

tions. Currently, the tool supports undoing the addition and removal of comments.

At the bottom of the user interface is a button labeled ”Undo” that a user can select.

Upon receiving input from the undo button, the plugin ensures that the action is a

valid action to undo. If not, it displays a message box informing the user that the

previous action cannot be undone.

If the prior action is undone, the current node is captured, and its contents are

processed. Based upon what type of node is being undone, the undo function takes the

appropriate action to reverse the course of action most recently done. After undoing

the command, variables reflecting the current node on the graph are updated, the

non-active branch is noted with a dashed white line, and the graph is redrawn to

show its current state. In Figure 7 an example can be seen of the last comment from

Figure 6 being undone.

23

Figure 7: Undoing Comment on Provenance Graph with Verbose Mode Active

3.3.4 Verbose Mode and Collapsing the Graph

In addition to the undo button, the Provenance Ninja interface allows a user to

display a verbose version of the graph and collapse the graph. Verbose mode allows

a user to display more information about the commands executed, such as the name

of an added function or the specific type of a variable changed. Collapsing the graph

enables viewing of the current branch and aids in decluttering larger provenance

graphs.

The creation of a parallel graph enables verbose mode functionality. In addition

to the main graph displayed whenever a command is processed, a second graph is

updated with a verbose description of the action that occurred. Suppose the user

selects verbose mode, then the plugin switches which graph it displays. This can be

toggled back and forth, depending on which version a reverse engineer requires.

A user can also collapse the graph to view only the current branch. At all times,

the plugin tracks the current branch in the graph. If the collapse graph feature is

toggled, it only draws nodes along the current branch when displaying the graph.

24

3.4 Tools and Implementation Requirements

All the development is conducted in PyCharm, an integrated development envi-

ronment (IDE), and executed and tested in Binary Ninja. The IDE is a personal

preference. Any code editor would have been sufficient for developing the plugin.

The only device requirement is a personal computer running Binary Ninja with the

plugin files located in the appropriate folder.

Decreasing the number of external dependencies compared to SensorRE is a design

focus. Fewer external dependencies would likely increase the efficiency of the system.

Aside from the core Binary Ninja user interface, the only additional dependency it

requires is the PySide6 library. Integration requires users to add this library to their

Binary Ninja environment. This is an improvement upon SensorRE as it had multiple

steps for the user to execute outside of Binary Ninja: starting the SensorRE server

from Powershell, installing Javascript, running the Javascript portion of the plugin,

and utilizing a web browser. Compared to SensorRE, Provenance Ninja requires fewer

steps for a user to execute before running the provenance plugin.

3.5 Usage Scenario

The functionality of Provenance Ninja is demonstrated through a scenario involv-

ing a user solving a simple reverse engineering challenge. The provenance graphs for

the scenario are shown after following the corresponding actions. The usage scenario

simulates how a reverse engineer can use Provenance Ninja to analyze a binary.

First, the user initializes the Provenance Ninja plugin within Binary Ninja, as

seen in Figure 8.

25

Figure 8: Evaluation Plan for Functionality and Efficiency of Provenance Ninja

Since they are attempting to find a password within this crackme they have begun

in the Linear:PE view, which is reflected in the graph. Looking through the program,

they identify the function that checks for the correct password and the function that

calls the password-checking function and other functions. Based upon this informa-

tion, they deduce that the second function must be the main function and rename it

to main. Since the first function verifies the user’s password, it is named passVerify.

Next, a comment is added to the variable initially presumed to be the user’s entered

password. This comment contains the text “user input?”. These updates to the graph

can be seen in Figure 9.

26

Figure 9: Provenance Graph After First Steps of Usage Scenario

Upon further review of the binary, the user realizes they made an error in their

analysis of the user input variable. They undo the comment they previously placed

and place the new comment “user input” where they eventually determine the location

of the variable. They also rename the variable in which the user’s input is stored to

“userInput”. After correctly identifying the input variable, it is now clear where

the password against which it is being checked is located. This is noted with the

comment “password” next to that line, as well as highlighting that line in blue. Also,

the reverse engineer notices that a variable labeled as type void is supposed to be an

int32t. These changes are reflected in Figure 10.

27

Figure 10: Provenance Graph After Further Steps Taken Usage Scenario

Finally, the analysis of the binary is complete. However, before reporting the work

that has been accomplished, the reverse engineer places the graph in verbose mode

and collapses it, as seen in Figure 11. This ensures that it is easier to identify the

flow of the analysis and view exactly which steps are taken.

28

Figure 11: Reportable Provenance Graph From Usage Scenario

3.6 Experiment Hypothesis

The purpose of the experiment is to compare usage to SensorRE. SensorRE is the

current standard for a Binary Ninja provenance tool. Thus, the most effective manner

of evaluating Provenance Ninja is to compare the two systems. The inherent difference

between the two plugins is that one natively runs within Binary Ninja, and the other

utilizes an external system. Our experimental hypothesis is that A provenance tool

directly within Binary Ninja will have lower memory usage and faster response times

than an external system.

29

First, a functionality test is performed. This compares the feature set of Prove-

nance Ninja to that of the existing tool, SensorRE. It is important to note that this

research does not include user testing, as that aspect has already been thoroughly

examined in previous research by Henry et al. [7]. Our focus is on the technical

capabilities of the tool and its integration with Binary Ninja. Functionality testing

ensures Provenance Ninja is a comparable tool to be analyzed against SensorRE.

Next, two metrics tested in this hypothesis are memory usage and response time.

These factors provide a quantitative measure of whether the difference in efficiency

between the two plugins is statistically significant. If the average memory usage and

response time of Provenance Ninja is lower than that of SensorRE to a statistically

significant measure, then the hypothesis will fail to be rejected. The system under

test diagram in Figure 12 details how these metrics are measured.

Figure 12: System Under Test Diagram

30

3.7 Functionalitity Testing Setup

Identical to SensorRE, Provenance Ninja captures five core functions within Bi-

nary Ninja, as shown in Figure 13.

Figure 13: Primary Capturable Actions within Binary Ninja [7]

The primary actions that Binary Ninja tracks are creating, modifying, and re-

moving read-only data, variables, type information, and functions [15]. These are the

insights that reflect knowledge acquired by the user when analyzing the binary [7].

Capturing comments and highlighting reflects visual insights, which are how users

visually interpret the knowledge insights they are analyzing. SensorRE is capable of

visualizing:

• Creation of Read-only data

• Creation and Removal of Data Variables

• Modification of Variables

• Defining and Undefining of Data Types

• Creation, Modification, and Removal of Functions

• Creation and Removal of Comments

31

• Creation of Highlighting

Thus, functionality testing must show that Provenance Ninja can track all user

session actions. The unit tests for evaluating memory usage and runtime analysis

show that Provenance Ninja can accomplish those tasks. Because the plugin has these

capabilities, it meets the primary goal of improving a reverse engineer’s workflow.

3.7.1 Function Test

The first unit test run focuses on functions. In this test, a single branch ten-node

graph is created by:

• Creating a function at a random address

• Changing the name of the new function to a different value than its default title

• Changing the type of the new function to a different value than its default title

• Changing the name and type of the new function to values unique from its

defaults and the previously used testing values

• Removing the function from the binary

3.7.2 Variable and Type Test

Variables and type information are the focus of the second unit test. It also uses

the feature to undo comments within the plugin to test two branches. A single-branch

eight-node graph is created by:

• Creating a read-only variable at a random location

• Creating a data variable at a random location

• Removing the new data variable

• Defining a new data type

32

• Undefining the new data type

• Changing an existing variable’s name to a different value than its default name

• Changing the same variable’s name to a different value than its default type

• Changing the name and type of the same variable to values unique from its

defaults and the previously used testing values

3.7.3 Comments and Highlighting Test

Finally, the third test focuses on comments and highlighting and handling multiple

branches. A three-branch fifteen-node graph is created by:

• Creating five comments at unique random locations

• Undoing the most recently created comment

• Highlighting a random line

• Creating two comments at unique random locations

• Removing the two created comments

• Undoing the removal of the comments utilizing the undo button within the

Provenance Ninja user interface

• Highlighting a random line

• Creation of two comments at unique random locations

Note that undoing a comment through the plugin does not create a new node

while removing the comment in the binary does. These three tests ensure that the

functionality of Provenance Ninja is comparable to that of SensorRE.

33

3.8 Experimental Design Setup

Two core response variables factor into this experiment: memory usage and re-

sponse time. Each of these variables considers the size of the binary being tested

and the number of operations performed on the given binary. Testing is conducted

on a virtual machine (VM) running Windows 10 with 8 gigabytes (GB) of RAM, 4

processors, a 60 GB hard drive, and running Binary Ninja version 3.2.

3.8.1 Response Time

Response time is a factor because a faster response time to user input is an ex-

pected outcome of designing the plugin to operate directly within Binary Ninja. This

is the time from when a user records an input until the corresponding node is drawn

on the provenance graph. To track this metric, extra code must be added to both

plugins’ codebases.

For Provenance Ninja, response time is measured by adding code to the core

python framework that utilizes the system time to detect how much time occurs

between a user entering input and the provenance graph displaying the proper output.

This metric is measured in milliseconds.

Because SensorRE operates partially in Binary Ninja and partially in a web

browser, a slightly different approach is taken. The initial time is still captured

in the python plugin. However, the time when the node is displayed is printed to

the console in the browser in the typescript execution. Due to system time being

the same, regardless of which programming language is used, this yields an effective

result.

34

3.8.2 Memory Usage

Another expected benefit of designing the plugin within the Binary Ninja infras-

tructure is that it utilizes less memory than one that operates within a web browser

via JavaScript. To evaluate this, the memory utilization (in megabytes) of Binary

Ninja, the web browser, and the PowerShell program is captured in the task manager.

The latter two only apply to SensorRE, and the first is relevant to both plugins.

3.8.3 Choice of Statistical Test

For statistically measuring the results of these tests, a multivariate analysis of

variance (MANOVA) test is used. This test seeks to determine the effect of two

different provenance plugins on response time and memory usage. Unit tests are

replicated on small, medium, and large graphs ten times each for 30 trials for each

tool. The results of these tests are then measured with an ANOVA test. Each

ANOVA test is run at a 95 percent confidence level. If the p-value of the ANOVA

test for each factor is below 0.05, then there is a statistically significant improvement

in that factor.

3.9 Ensuring Isolation

To ensure that the results gathered in the experiment are isolated solely to what is

being tested, both the operating system and Binary Ninja Version are held constant.

Windows 10 is the sole operating system for testing to reduce unknown variance. The

latest performance update to Binary Ninja at the time of testing is version 3.2 [15],

so this is the version used.

The most significant potential nuisance factor in this test is the inability to prop-

erly measure the memory usage of the plugins due to having to separate their work-

load from the innate workload of Binary Ninja and, for SensorRE, the web browser as

35

well. This is handled by visually observing which programs in the task manager are

affected by each plugin running before conducting tests. For SensorRE, Binary Ninja,

the Google Chrome web browser, the Powershell window, and the Node.JS Server-

side Javascript programs are all affected. When running Provenance Ninja, the only

change in memory that this test is concerned with is that of Binary Ninja. Testing

measures the memory values of these programs before any plugins are launched, again

after launch, and continues to monitor them after each node is added to the graph.

3.10 Randomization and Threats to Validity

Randomization is added to this experiment through the design of the unit tests.

Each test focuses on testing different functions of the provenance plugins, ensuring

that all major features are covered. The memory locations within the binary at which

the actions are taken are randomized for each test. This randomization ensures the

values gathered are as average as possible.

There are two primary threats to the validity of this experiment. Externally, a

concern is that the tests may not be typical of an actual reverse engineering envi-

ronment. It may seem that the commands are selected to produce optimal results.

However, this is remedied in the user tests by writing them to display the core fea-

tures of Binary Ninja on the provenance graph. These are the same features that

reverse engineers use in their day-to-day tasks. Internally, a potential factor could

be personal bias. However, in constructing these tests around the core features of

Binary Ninja, the personal bias of which factors are tested is reduced. Additionally,

testing metrics are defined in such a way that any researcher may utilize this metric

in comparing the efficiency of two different provenance plugins.

36

3.11 Methodology Summary

This chapter presented Provenance Ninja, the unique provenance tool that runs

natively within Binary Ninja as a Python plugin. It detailed its development, includ-

ing important details such as which features were chosen to be added, how the graph

was constructed, and how some of the more complex features were implemented.

The chapter then presented an example of how reverse engineers could use Prove-

nance Ninja in their daily workflow. Finally, the plan for testing the plugin against

SensorRE was outlined.

37

IV. Results and Analysis

4.1 Overview

This chapter provides a comprehensive overview of the key concepts and technolo-

gies that form the foundation of this research. The chapter begins by discussing the

importance of sensemaking in software reverse engineering, followed by an in-depth

analysis of the key concepts and techniques used in software reverse engineering.

Next, the chapter describes various visualization techniques commonly used in an-

alytics and the design of tools for evaluating them. The chapter then provides a

detailed overview of the concepts of provenance and the implementation technologies

used in this research.

4.2 Functionality Testing

Functionality testing shows that all desired performance is present within Prove-

nance Ninja. For the performance testing, the 3 tests outlined in Chapter 3 are ran 10

times each. To validate functionality, a provenance graph from one of each of those

tests is displayed in Figure 14. This figure shows that all the intended capturable ac-

tions from the function tests are properly received by Provenance Ninja and displayed

to the user in a graph.

This demonstrates that Provenance Ninja is functionally comparable to SensorRE.

It is a fully featured provenance tool that can display commands useful to a reverse

engineer when analyzing a binary. Now that functionality is verified, the performance

tests can begin.

38

Figure 14: Results of Functionality Testing

4.3 Performace Testing

The performance testing assesses the memory efficiency and response time of

Provenance Ninja versus SensorRE. As mentioned in Chapter 3, an ANOVA test

is run on each factor to determine if there is a statistically significant difference

between the two plugins at a 95 percent confidence level. If the research hypothesis

that Provenance Ninja utilizes less memory and operates with faster response times

compared to SensorRE fails to be rejected, tests indicate a performance-related benefit

to developing a plugin natively within a reverse engineering tool. Otherwise, it shows

no significant performance increase from a native plugin.

Two Windows 10 virtual machines (VMs) are created to set up the testing envi-

ronment. Both VMs are loaded with Binary Ninja; one is set up to run the SensorRE

plugin, and the other is to run Provenance Ninja. The tests are run in separate VMs

from clean Windows installations to ensure that both plugins can run uninhibited.

To set up SensorRE, the steps from its GitHub page are followed. The source code

is first installed from the repository. Then the necessary dependencies of NodeJS

39

version 8.12.0 and yarn are installed using Powershell. Next, the plugin is placed

into the Binary Ninja plugins folder. A simple crackme from crackmes.one is opened

with Binary Ninja, and the XML server is started. In the shell, the SensorRE server

is run. Finally, the provenance system is booted in a separate Powershell window,

and a Chrome web browser is opened to display the SensorRE graph at the address

http://localhost:8080/.

For the Provenance Ninja setup, the code is first placed directly into the Binary

Ninja plugin folder. Then, the networkx library is added to the Python framework

Binary Ninja uses to run plugins. Python is installed on the VM, and in the Binary

Ninja settings, the installation of python is set as the interpreter. Now that the plugin

can be run, it is ready for testing.

4.3.1 Gathering Data

Data is gathered in each plugin, one set of tests at a time. Each test is run 10

times for a total of 30 trials. For each test, the environment is reset to ensure no

residual data affects the memory values. The relevant memory values from the task

manager are recorded prior to the plugin being launched. Once the plugin is launched,

the baseline memory values are recorded as seen in the left of Figure 15. There are

two Powershell instances, a Google Chrome window and Binary Ninja. Then, the

tests are run with the memory values tracked after each node is added and the time

it takes the plugin to display the node after an input is received. The image to the

right of Figure 15 shows how the memory values increased for SensorRE after one

node is placed on the graph. The memory recording for Provenance Ninja works the

same way, just without Powershell and Google Chrome.

40

Figure 15: Memory Usage of SensorRE

Within both plugins, code is added to track the system time when an input is

received and when a node is printed to the graph for the user to view. For SensorRE,

the start time is tracked in python and printed to the console of Binary Ninja as shown

in the top section of Figure 16. The finish time is recorded within the typescript and

displayed in the console in the web browser as seen in the lower part of Figure 16.

The current memory address and comment content are noted in the Binary Ninja

console and corroborated in the Google Chrome console. This ensures that the start

and stop times are associated with the same action. Despite being measured in

different programming languages, both measurements utilize system time, which is

the same regardless of the runtime environment. Both values are recorded, and the

start time is subtracted from the finish time to acquire the runtime. In Provenance

Ninja, both happen within the python code, so the subtraction is done in the code

and printed directly to the console.

41

Figure 16: Runtime of SensorRE

4.3.2 Memory Analysis Results and Observations

Memory testing shows several vital insights. Across all three unit tests, there

is no statistically significant difference between the memory usage of Binary Ninja

itself. Across all tests for both plugins, the memory usage of Binary Ninja decreases

as more nodes are added to the graph. With this number similar across both plugins,

the improvements in memory are found in the external programs SensorRE requires

to run.

The total value for the amount of memory used across the two plugins as the

number of nodes on the graph increases is seen in Figure 17. The Provenance Ninja

number is representative of solely the memory usage of Binary Ninja. For SensorRE

the total includes Powershell and Google Chrome.

42

Figure 17: Average Memory Usage by Number of Nodes

SensorRE has two main external programs supporting it: Powershell and Google

Chrome. Powershell utilizes a consistent memory value once the program is started

that remains consistent as more nodes are added. Chrome has a variable memory

usage when started; however, once connected to the server, it stabilizes at a lower

rate.

The reason for the memory values across all programs remaining stable, regardless

of how many nodes or branches are added to the graph, is likely that both plugins

utilize low graphically intensive visualizations. A potential reason for this is that the

information stored in the graphs is text strings, which do not require a high memory

capacity. Due to this, even when commands are undone, the memory load on the

system is not significantly affected.

For Powershell, it makes sense that it would experience a spike in memory once

the server is being utilized. It then remains stable as no information is being stored

43

in the server, which merely serves as a conduit between Binary Ninja and Google

Chrome. The web browser memory values remain stable throughout stages of the

visualization as, similarly to what is observed with Binary Ninja, the text strings are

not capacitively demanding.

To determine if there is an improvement in the memory usage of Provenance Ninja

compared to SensorRE the data is consolidated into the average memory usage of each

test as seen in Figure 18

Figure 18: Average Memory Usage Across Tests

This graph shows a notable difference between the memory usage of SensorRE and

Provenance Ninja in line with the average memory usage by the number of nodes.

Each average has few points that deviate from linearity, with test 8 on SensorRE

being the only point straying from the norm. Because of this, an ANOVA test is run

on this dataset. The p-value from this test is 4.637E-21. This value is less than 0.05

showing that there is a statistically significant difference between the memory usage

of Provenance Ninja and SensorRE. This shows a proven improvement in memory

44

from developing a provenance plugin to run within the Binary Ninja environment

instead of utilizing an external server. The confidence intervals for the averages from

this test are shown in Figure 19.

Figure 19: Average Memory Confidence Intervals

The confidence intervals are shown on two separate graphs due to the disparity

between the averages. This shows that, at a 95 percent confidence interval, there is

no chance of the memory usage of the two plugins overlapping, further reinforcing

the results of the ANOVA test.

4.3.3 Runtime Analysis Results and Observations

The runtime tests also yield profitable results. On the surface, it is difficult to tell

if there is a margin of improvement when observing the average runtimes across all

tests.

There is no notable difference in the runtime of different commands between the

two provenance tools. This is most likely because once it is determined that a change

to the binary has been made, both plugins follow a similar logic process. The improve-

ment comes in the time it takes to send that information to the graph. SensorRE

transmits this data through an external server, while Provenance Ninja does not have

this restraint. Because of this, the average can be taken of each test runtime without

regard to which command was run during that test. The memory values from each

test are averaged and compiled in Figure 20.

45

Figure 20: Average Runtime by Test

From this graph, it is not apparent if there is a notable difference between the

memory values of SensorRE and Provenance Ninja. To determine if there is any

improvement, an ANOVA test is run on the values from Figure 20. The ANOVA test

returns a p-value of 0.02692. As this is less than the selected confidence interval of

0.05, the improvement in runtime is of a statistically significant margin. However,

the normality of the data is not verified from the average runtime. To ensure a lack

of overlap between the average runtimes of the two plugins, given their standard

deviations, a confidence interval graph is used as shown in Figure 21.

From this, which utilizes the mean and standard deviation of the two data sets,

it can be more clearly seen that there is little chance of the average runtime of either

plugin reaching a point that invalidates the statistical significance of the ANOVA

test.

46

Figure 21: Average Runtime Confidence Intervals

This confirms the testing hypothesis and makes logical sense. When SensorRE

receives input from the user, it first sends that information through the server before

it is received and displayed by the web browser. However, Provenance Ninja receives

the input, adds nodes to the graph, and visualizes them all from within the Python

plugin running in Binary Ninja. The testing shows there is a benefit to this, as

Provenance Ninja benefits from faster runtimes.

4.4 Results Summary

This chapter analyzed the results of the memory usage and runtime testing on

Provenance Ninja and SensorRE. In both metrics, Provenance Ninja shows statisti-

cally significant improvement. The decrease in memory usage derives from Prove-

nance Ninja wielding unique freedom from Powershell and an external web browser.

These freedoms also lower the runtime by removing the need to transmit data across

an external server.

47

V. Conclusions

Provenance tools benefit reverse engineers in a myriad of ways. These tools enable

users to view changes made to a binary in real time, undo previous actions, locate

where prior changes were made, and quickly summarize their findings upon comple-

tion. Reducing the time taken for software analysis in this way holds benefits for any

user, especially in time-critical tasks.

Research presented the development of a novel Python-based provenance plugin

called Provenance Ninja and implemented it directly within Binary Ninja. Testing

confirmed that this tool was more memory efficient and faster than SensorRE. This

chapter summarizes the research done and its contribution to reverse engineering.

5.1 Research Contributions

Provenance Ninja is a first-of-its-kind provenance tool for Binary Ninja that runs

natively within reverse engineering software. This meets the first research objective

and shows that a fully featured reverse engineering provenance tool can be designed

as a Binary Ninja plugin. Several libraries within Python and nuanced design choices

were used to make this a reality. Because Python plugins can be installed directly from

within Binary Ninja, this increases the accessibility of provenance tools for reverse

engineers.

Not only does this research show that such a tool can be created, but also that

it is more efficient than SensorRE. As the current state-of-the-art reverse engineering

provenance tool, SensorRE is a natural candidate for benchmark comparison. The

contents of Chapter 4 show that Provenance Ninja is indeed more memory efficient

and faster than SensorRE, answering the second research question. This confirms the

research hypothesis that designing a provenance tool to operate as a Python plugin

48

within Binary Ninja is more efficient than one that utilizes external programs.

For the reverse engineering community, this has the effect of improving their work-

flow on a day-to-day basis. Improving this process can directly lead to critical tasks

being solved more efficiently. Additionally, designing the tool to be more accessible

ensures a wider reach of reverse engineers can use this tool.

5.2 Research Limitations

This research focused on capturing essential functions of SensorRE and focused

on the attributes that would most directly affect memory and runtime. Because of

that, there were features of SensorRE that were not implemented into Provenance

Ninja. The most notable limitation is the ability to undo any activity recorded. For

testing, only commenting was given the functionality to be undone with a popup

textbox displaying if another command is executed before pressing the undo button.

Another feature of SensorRE not present in Provenance Ninja is the ability to

save a provenance graph. After researching this area, there is no currently established

method of saving the graph created with the Python libraries utilized. Such an effort

would have to be done manually and was not within the scope of this research.

5.3 Future Work

Based on the conclusions of this research, there are several avenues for further

research.

1. Other performance metrics can be analyzed, such as CPU performance, graph-

ics performance, and the amount of disk space within Binary Ninja that the

plugin takes up. While these metrics may bear little effect on some users, in

environments where resources are tight, even a small improvement in one of

these metrics could go a long way.

49

2. Research can be conducted on incorporating multiple ways of viewing prove-

nance data within Provenance Ninja. Currently, it only provides the linear

graph view. However, if user studies prove that additional views, such as a

table view, are useful to reverse engineers, that capacity can be added.

3. The ability to recreate the state of a binary from previous provenance data is

an area that can be helpful to reverse engineers. Future research can explore

the viability of this area and incorporate that feature into Provenance Ninja.

4. There are capabilities present in SensorRE not currently implemented in Prove-

nance Ninja. Future research could focus on expanding and improving the

functionality of the plugin.

5. When conducting testing, it was noted that adding nodes decreased the memory

usage of Binary Ninja. The reason for this is currently unknown. Further

exploration into this area is a potential future research topic.

6. This research chose to use Windows Task manager to evaluate memory perfor-

mance. Further exploration could use a tool such as memprofiler to determine

if memory leaks hinder provenance tools.

7. While this research only explored provenance analytics, this approach could

be applied to other domains to build reverse engineering tools for a variety of

purposes within Binary Ninja or other applications.

5.4 Concluding Thoughts

Analyzing a binary is an intensive process. Provenance tools are an effective

method of making that endeavor easier for a reverse engineer to process. This re-

search improved the current software reverse engineering provenance resources by

50

developing a Python-based plugin for Binary Ninja. Provenance Ninja displays real-

time information to a user about comments, functions, variables, and highlighting.

It does so in a manner that is more resource efficient than prior software while oper-

ating natively within the Binary Ninja environment. Provenance Ninja represents a

significant advancement in the field of reverse engineering and we believe that it will

be a valuable resource for practitioners in the field.

51

Appendix A. Software Listings

init.py

1 import thread ing

2 from b inaryn in ja import ∗

3 from b in a r yn i n j a u i import DockHandler , DockContextHandler ,

UIActionHandler , FlowGraphWidget , ViewFrame

4 from PySide6 . QtCore import Qt

5 from PySide6 . QtWidgets import (QApplication , QHBoxLayout , QVBoxLayout ,

QWidget ,

6 QPlainTextEdit , QPushButton , QCheckBox)

7 from PySide6 . QtGui import QFont , QFontMetrics

8 import gc

9 import networkx as nx

10 import time

11 from c o l l e c t i o n s import d e f a u l t d i c t , OrderedDict

12

13 ##

14 ################### GLOBAL VARIABLES #############################

15 widgets = []

16

17 current_addr = 0x401000

18 current_view = ”Graph :PE”

19 var_state = []

20 prev_var_name = []

21 prev_var_type = []

22 func_name = None

23 comment_state = None

24 h i g h l i gh t _ s t a t e = None

25 data_state = None

52

26 d ict_funcs = None

27 func_type = None

28 event func = time . time ()

29 prov_graph = nx . Graph ()

30 verbose_prov_graph = nx . Graph ()

31 curr_node = 0

32

33 ##TESTING

34 start_time = 0

35 stop_time = 0

36

37 #i n i t i a l i z i n g l i s t o f −1 va l u e s f o r t r a c k i n g branching

38 branches = [[−1]∗100 f o r i in range (100)]

39 current_branch = 0

40 num_branches = 1

41 branch_counter = 0

42

43 #v a r i a b l e to t rack whether an undo i s c u r r e n t l y occur ing

44 undo_occurring = False

45

46 ##

47 ##################### CREATION OF THE WIDGET #####################

48 #Creates the widge t

49 c l a s s ProvenanceNinjaDockWidget (QWidget , DockContextHandler) :

50 # i n i t i a l i z e r f o r e n t i r e Dock Widget

51 de f __init__(s e l f , parent , name , bv , data) :

52

53 g l o b a l widgets , branch_counter , current_branch

54 widgets . append (s e l f)

55

56 # i n i t i a l i z e s the QWidget

57 QWidget . __init__(s e l f , parent)

53

58

59 # i n i t i a l i z e s the dock hand ler

60 DockContextHandler . __init__(s e l f , s e l f , name)

61 s e l f . act ionHandler = UIActionHandler ()

62 s e l f . act ionHandler . setupActionHandler (s e l f)

63

64 # c r e a t e s a main d i s p l a y widge t

65 textbox_layout = QVBoxLayout ()

66 s e l f . textbox = QPlainTextEdit ()

67 s e l f . textbox . setLineWrapMode (QPlainTextEdit . LineWrapMode . NoWrap)

68 s e l f . textbox . setReadOnly (True)

69 font = QFont(” He lve t i c a ”)

70 s e l f . textbox . setFont (f ont)

71 font = QFontMetrics (f ont)

72 s e l f . textbox . setMinimumWidth (40 ∗ font . averageCharWidth ())

73 s e l f . textbox . setMinimumHeight (30 ∗ font . l i n eSpac ing ())

74 # tex t box_ layou t . addWidget (s e l f . t e x t b o x)

75

76 #i n i t i a l i z e s the graph

77 s e l f . flow_graph = FlowGraphWidget (None , data)

78 graph = FlowGraph ()

79

80 #(temporary) graph

81 prov_graph . add_node (1 , data=bv . f i l e . view)

82 verbose_prov_graph . add_node (1 , data=bv . f i l e . view)

83

84 #c r e a t e s (temporary) i n t i a l nodes

85 node_a = FlowGraphNode (graph)

86 node_a . l i n e s = [prov_graph . nodes [1] [' data ']]

87 node_a . h i g h l i g h t = enums . High l ightStandardColor .

GreenHighl ightColor

88 graph . append (node_a)

54

89 #f i r s t branch , f i r s t spot , node 0

90 branches [current_branch] [branch_counter] = 0

91 branch_counter += 1

92

93 s e l f . flow_graph . setGraph (graph)

94 textbox_layout . addWidget (s e l f . flow_graph)

95

96 #add undo but ton

97 s e l f . buttonsWidget = QWidget ()

98 s e l f . buttonsWidgetLayout = QHBoxLayout(s e l f . buttonsWidget)

99 s e l f . undo_button = QPushButton (”Undo”)

100 s e l f . undo_button . c l i c k e d . connect (s e l f . undo)

101 s e l f . buttonsWidgetLayout . addWidget (s e l f . undo_button)

102

103 #add the verbose and c o l l a p s e checkboxes

104 s e l f . checkboxWidget = QWidget ()

105 s e l f . checkboxWidgetLayout = QHBoxLayout(s e l f . checkboxWidget)

106 s e l f . verbose_check = QCheckBox(” Verbose ”)

107 s e l f . co l l apse_check = QCheckBox(” Co l lapse Graph”)

108 s e l f . verbose_check . stateChanged . connect (s e l f . update_graph)

109 s e l f . co l l apse_check . stateChanged . connect (s e l f . update_graph)

110 s e l f . checkboxWidgetLayout . addWidget (s e l f . verbose_check)

111 s e l f . checkboxWidgetLayout . addWidget (s e l f . co l l apse_check)

112

113 #add expor t bu t ton

114 s e l f . exportWidget = QWidget ()

115 s e l f . exportWidgetLayout = QHBoxLayout(s e l f . exportWidget)

116 s e l f . exportButton = QPushButton (” Export ”)

117 #s e l f . exportBut ton . c l i c k e d . connect (s e l f . undo)

118 s e l f . exportWidgetLayout . addWidget (s e l f . exportButton)

119

120 textbox_layout . addWidget (s e l f . checkboxWidget)

55

121 textbox_layout . addWidget (s e l f . buttonsWidget)

122 textbox_layout . addWidget (s e l f . exportWidget)

123 #undo_button . c l i c k e d . connect (temp_func)

124

125

126 # Put t ing a l l the c h i l d l a y o u t s t o g e t h e r

127 layout = QVBoxLayout ()

128 layout . addLayout (textbox_layout)

129 s e l f . setLayout (layout)

130

131

132 # Actual s t o rage v a r i a b l e s

133 s e l f . bv = bv

134 s e l f . f i l ename = None

135

136 de f set_text (s e l f , t ex t) :

137 s e l f . textbox . se tPla inText (t ex t)

138

139 de f s e t _ l i n e (s e l f , t ex t) :

140 s e l f . l i n e _ i n f o . setText (t ex t)

141

142 de f se t_funct ion (s e l f , t ex t) :

143 s e l f . f unc t i on_in fo . setText (t ex t)

144

145 de f shou ldBeVis ib l e (s e l f , view_frame) :

146 i f view_frame i s None :

147 return Fal se

148 e l s e :

149 return True

150

151 de f notifyViewChanged (s e l f , view_frame) :

152 i f view_frame i s None :

56

153 s e l f . datatype . setText (”None”)

154 s e l f . data = None

155 e l s e :

156 s e l f . datatype . setText (view_frame . getCurrentDataType ())

157 view = view_frame . getCurrentViewInter face ()

158 s e l f . data = view . getData ()

159

160 de f contextMenuEvent (s e l f , event) :

161 s e l f . m_contextMenuManager . show (s e l f .m_menu, s e l f . act ionHandler)

162

163 de f undo (s e l f) :

164 g l o b a l curr_node , undo_occurring

165

166

167 #i f i t i s a v a l i d node to be undone

168 i f curr_node > 0 :

169 # s e t s f l a g so t h a t no graph nodes are added as a r e s u l t o f

undoing ac t i on s

170 undo_occurring = True

171

172 # captures the number o f the curren t node

173 undo_command = −1

174 f o r i in range (l en (branches [current_branch])) :

175 i f branches [current_branch] [i] == curr_node :

176 undo_command = branches [current_branch] [

branch_counter − 1]

177 break

178 # captures the t e x t from t h a t node

179 undo_node = verbose_prov_graph . nodes [undo_command + 1] [' data

']

180 # i s o l a t e s the address where the ac t i on occurred

181 s p l i t = undo_node . s p l i t (' : ')

57

182 address = s p l i t [0]

183

184 #f i l t e r s based upon what the ac t i on was

185 va l id_act ion = False

186 i f ' comment added ' in s p l i t [1] :

187 # g e t s the func t i on in which the comment was made

188 func = s e l f . bv . get_funct ions_conta in ing (i n t (address , 16)

)

189 # removes the comment at t h a t l o c a t i o n

190 func [0] . set_comment_at (i n t (address , 16) , ””)

191 p r in t (” undid comment at ” + address)

192 va l id_act ion = True

193 e l i f ' comment removed ' in s p l i t [1] :

194 # g e t s the func t i on in which the comment was made

195 func = s e l f . bv . get_funct ions_conta in ing (i n t (address , 16)

)

196 # removes the comment at t h a t l o c a t i o n

197 p r in t (s p l i t [1])

198 comment = s p l i t [1] . s p l i t (”//”)

199 p r in t (comment)

200 func [0] . set_comment_at (i n t (address , 16) , comment [1])

201 p r in t (”added comment at ” + address)

202 va l id_act ion = True

203 e l s e :

204 show_message_box (” Error ” , ”Cannot undo t h i s command” ,

205 MessageBoxButtonSet . OKButtonSet ,

MessageBoxIcon . In format ionIcon)

206 p r in t (”Cannot undo t h i s command”)

207

208 i f va l id_act ion :

209 #r e s e t s the p o s i t i o n o f the current node

210 f o r i in range (99) :

58

211 i f branches [current_branch] [i +1] < 1 :

212 curr_node = 0

213 break

214 e l i f curr_node == branches [current_branch] [i +1] :

215 curr_node = branches [current_branch] [i]

216 break

217

218 #update graph to r e f l e c t undone ac t i on

219 s e l f . update_graph (0)

220

221 #jump to most curren t ac t i on (the new current node)

222 curr_act ion = prov_graph . nodes [curr_node +1] [' data ']

223 #i f i t i s an ac t i on and not the f i r s t node in the graph

224 i f ' 0x ' in curr_act ion :

225 s p l i t = curr_act ion . s p l i t (' : ')

226 address = s p l i t [0]

227 s e l f . bv . f i l e . nav igate (s e l f . bv . f i l e . view , i n t (address

, 16))

228

229 undo_occurring = False

230

231 de f update_graph (s e l f , id = None) :

232 #Update graph to d i s p l a y a c e r t a i n s t a t e

233

234 graph = FlowGraph ()

235

236 nodes = []

237 f o r i in range (prov_graph . number_of_nodes ()) :

238 # check i f the graph shou ld be c o l l a p s e d

239 #p r i n t (” i i s ” + s t r (i) + ” curr branch conta ins ” + s t r (

branches [current_branch]))

240 i f s e l f . co l l apse_check . isChecked () :

59

241 i f i not in branches [current_branch] or i > curr_node :

242 cont inue

243 n = FlowGraphNode (graph)

244 i f (i == curr_node) :

245 n . h i g h l i g h t = enums . Highl ightStandardColor .

GreenHighl ightColor

246 e l i f i > curr_node or i not in branches [current_branch] :

247 n . h i g h l i g h t = enums . Highl ightStandardColor .

NoHighl ightColor

248 e l i f ' comment ' in prov_graph . nodes [i +1] [' data '] :

249 n . h i g h l i g h t = enums . Highl ightStandardColor .

B lueHigh l ightCo lor

250 #dec ide between the verbose t e x t and the s i m p l i f i e d t e x t

251 i f s e l f . verbose_check . isChecked () :

252 n . l i n e s = verbose_prov_graph . nodes [i +1] [' data ']

253 e l s e :

254 n . l i n e s = prov_graph . nodes [i +1] [' data ']

255 graph . append (n)

256 nodes . append (n)

257

258

259

260 current_edge = EdgeStyle (EdgePenStyle . So l idLine , 2 , ThemeColor .

GreenStandardHighl ightColor)

261 past_edge = EdgeStyle (EdgePenStyle . DashLine , 1 , ThemeColor .

WhiteStandardHighl ightColor)

262 outgoing_edges = [[0] ∗ l en (nodes) f o r i in range (l en (nodes))]

263 num_nodes = len (nodes)

264

265 i f s e l f . co l l apse_check . isChecked () :

266 f o r i in range (l en (nodes) −1) :

267 nodes [i] . add_outgoing_edge (BranchType . UserDefinedBranch ,

60

nodes [i +1] , current_edge)

268 outgoing_edges [i] [i +1] = 1

269 e l s e :

270 f o r i in range (num_branches) :

271 f o r j in range (99) :

272 branch_drawn = num_branches − (i +1)

273 x = branches [branch_drawn] [j]

274 y = branches [branch_drawn] [j +1]

275 i f x > −1 and y > −1 and y < num_nodes :

276 i f branch_drawn == current_branch and x <

curr_node :

277 nodes [x] . add_outgoing_edge (BranchType .

UserDefinedBranch , nodes [y] ,

current_edge)

278 outgoing_edges [x] [y] = 1

279 e l s e :

280 i f outgoing_edges [x] [y] == 0 :

281 nodes [x] . add_outgoing_edge (BranchType .

UserDefinedBranch , nodes [y] ,

past_edge)

282 outgoing_edges [x] [y] = 1

283 e l s e :

284 break

285 s e l f . flow_graph . setGraph (graph)

286

287 @staticmethod

288 de f create_widget (name , parent , bv , data=None) :

289 return ProvenanceNinjaDockWidget (parent , name , bv , data)

290

291 # Creates the graph por t i on o f the widge t

292 c l a s s FlowGraphWidget (FlowGraphWidget) :

293 # i n i t i a l i z e s the graph por t i on o f the widge t

61

294 de f __init__(s e l f , parent : QWidget , view : BinaryView , graph :

FlowGraph = None) :

295 super () . __init__(parent , view , graph)

296 s e l f . bv = view

297

298 ##

299 ################### REGISTERING NOTIFICATIONS ####################

300 #Reg i s t e r N o t i f i c a t i o n s and t e l l s p l u g in where to go f o r var ious

n o t i f i c a t i o n type s

301 c l a s s myNot i f i ca t ion (b ina ryn in ja . B inaryDataNot i f i cat ion , QWidget) :

302 de f __init__(s e l f , view , dock_widget) :

303 s e l f . view = view

304 s e l f . dock_widget = dock_widget

305 pass

306

307 de f data_written (s e l f , view , o f f s e t , l ength) :

308 p r in t (” data_written : ” , view , o f f s e t , l ength)

309 data_written (view , o f f s e t , length , s e l f . dock_widget)

310 pass

311

312 de f data_inserted (s e l f , view , o f f s e t , l ength) :

313 p r in t (” data_inserted : ” , view , o f f s e t , l ength)

314 pass

315

316 de f data_removed (s e l f , view , o f f s e t , l ength) :

317 p r in t (”data_removed : ” , o f f s e t , l ength)

318 pass

319

320 de f function_added (s e l f , view , func) :

321 p r in t (” function_added : ” , func)

322 func_added (view , func , s e l f . dock_widget)

323 pass

62

324

325 de f function_removed (s e l f , view , func) :

326 p r in t (” function_removed : ” , func)

327 func_removed (view , func , s e l f . dock_widget)

328 pass

329

330 de f function_updated (s e l f , view , func) :

331 p r in t (” function_updated ” , hex (i n t (func . s t a r t)))

332 func_updated (view , func , s e l f . dock_widget)

333 pass

334

335 de f data_var_added (s e l f , view , var) :

336 data_var_added (view , var , s e l f . dock_widget)

337 p r in t (”var_added : ” , var)

338 pass

339

340 de f data_var_removed (s e l f , view , var) :

341 data_var_removed (view , var , s e l f . dock_widget)

342 p r in t (”var_removed : ” , var)

343 pass

344

345 de f data_var_updated (s e l f , view , var) :

346 p r in t (”var_updated : ” , var)

347 pass

348

349 de f str ing_found (s e l f , view , str ing_type , o f f s e t , l ength) :

350 p r in t (” str ing_found : ” , str ing_type , o f f s e t , l ength)

351 pass

352

353 de f string_removed (s e l f , view , str ing_type , o f f s e t , l ength) :

354 p r in t (” string_removed : ” , str ing_type , o f f s e t , l ength)

355 pass

63

356

357 de f type_def ined (s e l f , view , name , type) :

358 g l o b a l type_f lag

359 type_def ined (view , s t r (name) , type , s e l f . dock_widget)

360 p r in t (” type_def ined : ” , name , type)

361 pass

362

363 de f type_undefined (s e l f , view , name , type) :

364 g l o b a l type_f lag

365 type_undefined (view , s t r (name) , type , s e l f . dock_widget)

366 p r in t (” type_undefined : ” , name , type)

367 pass

368

369

370 ##

371 ################### INPUT PARSING ################################

372

373 de f func_updated (bv , funct ion , dockwidget) :

374 g l o b a l eventfunc , var_state , prev_var_name , prev_var_type , func_name

, comment_state , \

375 h igh l i gh t_sta t e , d ict_funcs , branch_counter , current_branch ,

num_branches , curr_node

376 temp_name = 0

377 temp_type = 0

378

379 try :

380 p r in t (”{} {}” . format (hex (i n t (bv . get_funct ions_conta in ing (

current_addr) [0] . s t a r t)) , s t r (func t i on)))

381 i f (event func + 1 < time . time ()) :

382 # Check f o r var name c o l l i s i o n (caused spur ious var e n t r i e s)

383 i f (s t r (bv . get_funct ions_conta in ing (current_addr)) != s t r (

func t i on)) :

64

384 var_state = func t i on . vars . copy ()

385

386 # Local Var name/ type change

387 i f (l en (var_state) == len (prev_var_name) == len (prev_var_type

)) :

388 f o r item , var in enumerate (var_state) :

389 i f (s t r (prev_var_name [item]) != s t r (func t i on . vars [

item] . name)) and temp_name == 0 :

390 p r in t (” [] Name change : {} {}” . format (func t i on .

vars [item] . name , item))

391 var_type_new , var_name_new , index = func t i on .

vars [item] . type , f unc t i on . vars [item] . name ,

item

392 var_type_old , var_name_old = prev_var_type [item

] , prev_var_name [item]

393 temp_name = 1

394 i f (s t r (prev_var_type [item]) != s t r (func t i on . vars [

item] . type)) and temp_type == 0 :

395 p r in t (” [] Type change : {} {}” . format (func t i on .

vars [item] . type , item))

396 var_type_new , var_name_new , index = func t i on .

vars [item] . type , f unc t i on . vars [item] . name ,

item

397 var_type_old , var_name_old = prev_var_type [item

] , prev_var_name [item]

398 temp_type = 1

399

400 # Local Var name/ type change

401 i f (temp_name == 1 and temp_type == 1) :

402 p r in t (

403 ” [∗] Var_Updated : func :{} func_addr :{} var_name_new

:{} var_type_new :{} var_name_old :{} var_type_old

65

: {} ”

404 . format (func t i on . symbol . name , s t r (func t i on) [11 : −1] ,

var_name_new , var_type_new , var_name_old ,

405 var_type_old))

406 address = func t i on . s t a r t

407 graph_text = ' 0x { : x} ' . format (i n t (address)) + ” : v a r i a b l e

name and type updated ”

408 verbose_graph_text = ' 0x { : x} ' . format (i n t (address)) + ” :

v a r i a b l e name and type updated //” \

409 + s t r (var_type_new) + s t r (

var_name_new)

410 addNodeToGraph (graph_text , dockwidget ,

verbose_graph_text)

411

412 e l i f temp_type == 1 :

413 address = func t i on . s t a r t

414 graph_text = ' 0x { : x} ' . format (i n t (address)) + ” : v a r i a b l e

type updated ”

415 verbose_graph_text = ' 0x { : x} ' . format (i n t (address)) + ” :

v a r i a b l e type updated //” \

416 + s t r (var_type_new) + ” ” + s t r (

var_name_new)

417 addNodeToGraph (graph_text , dockwidget ,

verbose_graph_text)

418 e l i f temp_name == 1 :

419 address = func t i on . s t a r t

420 graph_text = ' 0x { : x} ' . format (i n t (address)) + ” : v a r i a b l e

name updated ”

421 verbose_graph_text = ' 0x { : x} ' . format (i n t (address)) + ” :

v a r i a b l e name updated //” \

422 + s t r (var_type_new) + ” ” + s t r (

var_name_new)

66

423 addNodeToGraph (graph_text , dockwidget ,

verbose_graph_text)

424 var_state = func t i on . vars

425 prev_var_name = []

426 prev_var_type = []

427 f o r i in range (l en (var_state)) :

428 prev_var_name . append (var_state [i] . name)

429 prev_var_type . append (var_state [i] . type)

430 p r in t (prev_var_name)

431

432 # Function name/ type change

433 # Remember what the func name/ type were f i r s t (d ic t_funcs) ,

then send new and o ld

434 dict_funcs_new = func_types (bv)

435 new_key_change , new_key_diff , new_set_diff = di f f_func_types

(dict_funcs_new , d ic t_funcs)

436 p r in t (”New key d i f f : ” + s t r (new_key_diff))

437 #i f (new_key_diff > 0) :

438 i f (new_key_diff != 0) :

439 p r in t (' [∗] Updating func t i on name {} ' . format (func t i on))

440

441 p r in t (” func_new : {} {}” . format (new_key_diff ,

new_set_dif f))

442 old_key_change , old_key_diff , o ld_se t_d i f f =

di f f_func_types (dict_funcs , dict_funcs_new)

443 pr in t (” func_old : {} {}” . format (old_key_diff ,

o ld_se t_d i f f))

444 fname = func t i on . name

445 f type = func t i on . return_type

446

447 i f (old_key_change != 0 and new_key_change != 0) :

448 # event func2 = time . time () #s k i p next updates (c a l l

67

updates in o ther f u n c t i o n s)

449 # Name change

450 pr in t (” k e y d i f f : {} {}” . format (old_key_diff ,

new_key_diff))

451 i f s t r (f type) in s t r (o ld_key_dif f) :

452 p r in t (” ∗∗∗∗ Name updated ∗∗∗∗ ”)

453

454 i f fname in new_key_diff :

455 address = func t i on . s t a r t

456 graph_text = ' 0x { : x} ' . format (i n t (address)) +

” : func t i on name change ”

457 verbose_graph_text = ' 0x { : x} ' . format (i n t (

address)) + ” : func t i on name change //”

+ s t r (f type) + ” ” + fname

458 addNodeToGraph (graph_text , dockwidget ,

verbose_graph_text)

459

460 # Type change

461 e l i f s t r (fname) in s t r (o ld_key_dif f) :

462 p r in t (” ∗∗∗∗ Type updated ∗∗∗∗ ”)

463

464 i f fname in new_key_diff :

465 address = func t i on . s t a r t

466 graph_text = ' 0x { : x} ' . format (i n t (address)) +

” : func t i on type change ”

467 verbose_graph_text = ' 0x { : x} ' . format (i n t (

address)) + ” : func t i on type change //”

+ s t r (f type) + ” ” + fname

468 addNodeToGraph (graph_text , dockwidget ,

verbose_graph_text)

469

470 # Name and Type change

68

471 e l s e : # i f (s t r (l i s t (o l d_se t_d i f f) [1]) != s t r (l i s t (

new_set_dif f) [1])) :

472 pr in t (” ∗∗∗∗ Name and Type updated ∗∗∗∗ ”)

473

474 i f fname in new_key_diff :

475 address = func t i on . s t a r t

476

477 graph_text = ' 0x { : x} ' . format (i n t (address)) +

” : func t i on name and type change ”

478 verbose_graph_text = \

479 ' 0x { : x} ' . format (i n t (address)) + ” :

func t i on name and type change //” +

s t r (f type) + ” ” + fname

480 addNodeToGraph (graph_text , dockwidget ,

verbose_graph_text)

481

482 dict_funcs = dict_funcs_new

483 event func = time . time ()

484 # func_name = func t i on . symbol . name

485

486 # Comment s t a t e change

487 i f ((comment_state != func t i on . comments)) :

488 address , comment , comment_text = None , None , None

489 comment_state_len = len (comment_state)

490 new_comment_len = len (func t i on . comments)

491 p r in t (”Comment change {} {}” . format (comment_state_len ,

new_comment_len))

492 p r in t (”comment_state : {}” . format (comment_state))

493 p r in t (” func t i on . comments : {} {}” . format (funct ion ,

func t i on . comments))

494 # Added

495 i f (comment_state_len < new_comment_len or

69

comment_state_len == new_comment_len) :

496 f o r item in func t i on . comments . i tems () :

497 i f item not in comment_state . i tems () :

498 address = item [0]

499 comment = item [1]

500 comment_text = ”comment_changed”

501 p r in t (” [∗] Comment changed : {}” . format (

comment))

502 graph_text = ' 0x { : x} ' . format (i n t (address)) +

” : comment added”

503 verbose_graph_text = ' 0x { : x} ' . format (i n t (

address)) + ” : comment added //” +

comment

504 addNodeToGraph (graph_text , dockwidget ,

verbose_graph_text)

505

506 # Removed comment

507 e l i f (comment_state_len > new_comment_len) :

508 f o r item in comment_state . i tems () :

509 i f item not in func t i on . comments . i tems () :

510 address = item [0]

511 comment = item [1]

512 comment_text = ”comment_removed”

513 p r in t (” [∗] Comment removed : {}” . format (

comment))

514 graph_text = ' 0x { : x} ' . format (i n t (address)) +

” : comment removed”

515 verbose_graph_text = ' 0x { : x} ' . format (i n t (

address)) + ” : comment removed //” +

comment

516 addNodeToGraph (graph_text , dockwidget ,

verbose_graph_text)

70

517 comment_state = func t i on . comments

518

519 # H i g h l i g h t change :

520 i f (s t r (h i gh l i g h t_s t a t e) != s t r (func t i on . g e t_ in s t r_h igh l i gh t

(current_addr))) :

521 p r in t (” [∗] H igh l i gh t change : {} {}” . format (hex (i n t (

current_addr)) ,

522 func t i on .

g e t_ in s t r_h igh l i gh t

(

current_addr

)))

523 p r in t (” h i gh l i gh t_s ta t e : {}” . format (h i gh l i g h t_s t a t e))

524 p r in t (” ge t_ in s t r_h igh l i gh t : {}” . format (func t i on .

g e t_ in s t r_h igh l i gh t (current_addr)))

525

526 color_old , color_new = color_matching (s t r (

h i gh l i gh t_s ta t e) ,

527 s t r (func t i on .

g e t_ in s t r_h igh l i gh t

(current_addr)

))

528

529 graph_text = ' 0x { : x} ' . format (i n t (current_addr)) + ” :

h i g h l i g h t ”

530 verbose_graph_text = ' 0x { : x} ' . format (i n t (current_addr))

+ ” : h i g h l i g h t //” + s t r (color_new)

531 addNodeToGraph (graph_text , dockwidget ,

verbose_graph_text)

532

533 h i gh l i gh t_s ta t e = func t i on . g e t_ ins t r_h igh l i gh t (

current_addr)

71

534

535 e l s e :

536 p r in t (” Skipping func_updated1 ”)

537 except Exception as e :

538 p r in t (” Exception : sk ipp ing func_update : {}” . format (e))

539

540

541 de f func_added (bv , funct ion , dockwidget) :

542 g l o b a l event func

543

544 i f (event func + 2 < time . time ()) :

545 data = OrderedDict ()

546 p r in t (” [∗] Function Added : {}” . format (func t i on . symbol . name))

547

548 address = func t i on . s t a r t

549 graph_text = ' 0x { : x} ' . format (i n t (address)) + ” : func t i on added”

550 verbose_graph_text = ' 0x { : x} ' . format (i n t (address)) + ” : func t i on

added //” + func t i on . symbol . name

551 addNodeToGraph (graph_text , dockwidget , verbose_graph_text)

552

553 event func = time . time ()

554

555

556 de f func_removed (bv , funct ion , dockwidget) :

557 g l o b a l event func

558

559 i f (event func + 1 < time . time ()) :

560 data = OrderedDict ()

561 p r in t (” [∗] Function Removed : {}” . format (func t i on . symbol . name))

562

563 address = func t i on . s t a r t

564 graph_text = ' 0x { : x} ' . format (i n t (address)) + ” : func t i on removed

72

”

565 verbose_graph_text = ' 0x { : x} ' . format (i n t (address)) + ” : func t i on

removed //” + func t i on . symbol . name

566 addNodeToGraph (graph_text , dockwidget , verbose_graph_text)

567

568 event func = time . time ()

569

570

571 de f data_written (bv , address , length , dockwidget) :

572 g l o b a l eventfunc , data_state

573

574 i f (event func + 1 < time . time ()) :

575 data = OrderedDict ()

576 p r in t (' [∗] Data Written <0x{name : x}> { length } ' . format (name=

address , l ength=length))

577 data_new = bv . read (address , 1)

578 p r in t (”new data : {} o ld data : {}” . format (data_new , data_state))

579

580 graph_text = ”0x” + s t r (address) + ” : data wr i t t en ”

581 verbose_graph_text = ' 0x { : x} ' . format (i n t (address)) + ” : data

wr i t t en //” + s t r (data_new)

582 addNodeToGraph (graph_text , dockwidget , verbose_graph_text)

583

584 event func = time . time ()

585

586 e l s e :

587 pass

588

589

590 de f type_def ined (bv , name , type , dockwidget) :

591 g l o b a l event , event func

592

73

593 i f (event + 1 < time . time ()) :

594 i f (event func + 1 < time . time ()) :

595 data = OrderedDict ()

596 p r in t (' [∗] Type Def ined ')

597

598 graph_text = ” type de f ined ”

599 verbose_graph_text = ” type de f ined //” + s t r (type)

600 addNodeToGraph (graph_text , dockwidget , verbose_graph_text)

601 event = time . time ()

602

603 e l s e :

604 p r in t (' [∗] Type Def ined − sk ipp ing ')

605 pass

606

607

608 de f type_undefined (bv , name , type , dockwidget) :

609 g l o b a l event , event func

610

611 i f (event + 1 < time . time ()) :

612 i f (event func + 1 < time . time ()) :

613 data = OrderedDict ()

614 p r in t (' [∗] Type Undefined ')

615

616 graph_text = ” type undef ined ”

617 verbose_graph_text = ” type undef ined //” + s t r (type)

618 addNodeToGraph (graph_text , dockwidget , verbose_graph_text)

619

620 e l s e :

621 p r in t (' [∗] Type Undefined − sk ipp ing ')

622 pass

623

624

74

625 de f data_var_added (bv , var , dockwidget) :

626 g l o b a l event func

627

628 i f (event func + 1 < time . time ()) :

629 data = OrderedDict ()

630 p r in t (' [∗] Data_var_added ')

631

632 address = var . address

633 graph_text = ' 0x { : x} ' . format (i n t (address)) + ” : data var added”

634 verbose_graph_text = ' 0x { : x} ' . format (i n t (address)) + ” : data var

added //” + s t r (var)

635 addNodeToGraph (graph_text , dockwidget , verbose_graph_text)

636

637 event func = time . time ()

638

639 e l s e :

640 p r in t (' [∗] Data Var Added − sk ipp ing ')

641 pass

642

643

644 de f data_var_removed (bv , var , dockwidget) :

645 g l o b a l event func

646

647 i f (event func + 1 < time . time ()) :

648 data = OrderedDict ()

649 p r in t (' [∗] Data_var_removed ')

650

651 address = var . address

652 graph_text = ' 0x { : x} ' . format (i n t (address)) + ” : data var removed

”

653 verbose_graph_text = ' 0x { : x} ' . format (i n t (address)) + ” : data var

removed //” + s t r (var)

75

654 addNodeToGraph (graph_text , dockwidget , verbose_graph_text)

655

656 event func = time . time ()

657 e l s e :

658 p r in t (' [∗] Data Var Removed − sk ipp ing ')

659 pass

660

661 de f addNodeToGraph (graph_text , dockwidget , verbose_graph_text = None) :

662 g l o b a l curr_node , num_branches , current_branch , branch_counter ,

undo_occurring

663

664 i f not undo_occurring :

665 p r in t (” Branching ”)

666 i f curr_node < prov_graph . number_of_nodes () − 1 :

667 num_branches += 1

668 current_branch += 1

669 branch_counter = 0

670 i = 0

671 whi l e branches [current_branch −1] [i] != curr_node :

672 branches [current_branch] [i] = branches [current_branch

−1] [i]

673 branch_counter += 1

674 i += 1

675 branches [current_branch] [i] = curr_node

676 branch_counter +=1

677 pr in t (”new branch has ” + s t r ((i +1)) + ” nodes ”)

678

679

680 prov_graph . add_node (prov_graph . number_of_nodes () + 1 , data=

graph_text)

681 verbose_prov_graph . add_node (verbose_prov_graph . number_of_nodes ()

+ 1 , data=verbose_graph_text)

76

682 pr in t (” cur rent branch : ” , current_branch , ” branch counter : ” ,

branch_counter)

683 branches [current_branch] [branch_counter] = prov_graph .

number_of_nodes () − 1

684 branch_counter += 1

685 curr_node = prov_graph . number_of_nodes () − 1

686 dockwidget . update_graph ((0))

687

688 ##

689 ################### SETUP FUNCTIONS #############################

690 # crea t e d i c t i o n a r y o f address , type , name fo r b inary

691 de f func_types (bv) :

692 s = []

693 tup_master = ()

694 f o r func in bv . f u n c t i o n s :

695 tup_temp = (s t r (func) [11 : −1] , s t r (func . return_type))

696 s . append (tup_temp)

697 tup_temp2 = (s t r (func) [11 : −1] , s t r (func . name))

698 s . append (tup_temp2)

699

700 d = d e f a u l t d i c t (l i s t)

701 f o r k , v in s :

702 d [k] . append (v)

703 return d

704

705 de f d i f f_func_types (a , b) :

706 # Change func t i on type

707 di f f_change = 0

708 s e t _ d i f f = None

709 f o r i in a :

710 d i f f = s e t (a [i]) − s e t (b [i])

711 i f (l en (d i f f) > 0) :

77

712 di f f_change = d i f f

713 s e t _ d i f f = s e t (a [i])

714

715 #Change func name

716 d i f f_keys = a . keys () − b . keys ()

717 func_renamed = di f f_keys

718 #return di f f_change , s e t _ d i f f , func_renamed

719 return func_renamed , di f f_change , s e t _ d i f f

720

721 c l a s s OrderedSet (c o l l e c t i o n s . Set) :

722 de f __init__(s e l f , i t e r a b l e =()) :

723 s e l f . d = c o l l e c t i o n s . OrderedDict . fromkeys (i t e r a b l e)

724

725 de f __len__(s e l f) :

726 return l en (s e l f . d)

727

728 de f __contains__ (s e l f , e lement) :

729 return element in s e l f . d

730

731 de f __iter__(s e l f) :

732 return i t e r (s e l f . d)

733

734

735 de f type_lookup (var_type) :

736 typ e_ l i s t = [' int16_t ' , ' int24_t ' , ' int32_t ' , ' char ' , ' void ' , '

uint16_t ' , ' uint24_t ' , ' uint32_t ' ,

737 ' f l o a t 8 ' , ' f l o a t 1 6 ' , ' f l o a t 2 4 ' , ' f l o a t ' , ' double ' , '

f l o a t 7 2 ' , ' long double ' ,

738 ' void ∗ ' , ' void ∗ const ' , ' void ∗ v o l a t i l e ' , ' void&' , '

int32_t ∗ ']

739

740 i f (t ype_ l i s t . count (var_type) > 0) :

78

741 pr in t (” found var : {}” . format (var_type))

742 return True

743 e l s e :

744 return Fal se

745

746 de f color_matching (color_old , color_new) :

747 co l o r s_d i c t = { ' none ' : ' NoHighl ightColor ' , ' b lack ' : '

B lackHigh l ightCo lor ' , ' b lue ' : ' B lueHigh l ightCo lor ' ,

748 ' cyan ' : ' CyanHighl ightColor ' , ' green ' : '

GreenHighl ightColor ' , ' magenta ' : '

MagentaHighl ightColor ' ,

749 ' orange ' : ' OrangeHighl ightColor ' , ' red ' : '

RedHighl ightColor ' , ' white ' : ' WhiteHighl ightColor

' ,

750 ' ye l low ' : ' Ye l lowHigh l ightColor ' }

751

752 _old_color = co lor_old . s p l i t (' : ') [1] . s p l i t () [0] [: − 1]

753 _new_color = color_new . s p l i t (' : ') [1] . s p l i t () [0] [: − 1]

754

755 p r in t (_old_color , _new_color)

756 o ld_co lor = co l o r s_d i c t . get (_old_color , co lor_old)

757 new_color = co l o r s_d i c t . get (_new_color , color_new)

758

759 return old_color , new_color

760

761 de f setValue (bip , bv) :

762 g l o b a l current_addr , selChanged , current_view , var_state , func_name ,

comment_state , h i gh l i gh t_sta t e , data_state , d ict_funcs ,

func_type , v a r _ l i s t

763 valueChanged = current_addr != bip . current_addr

764 # p r i n t (”{} {} {}” . format (valueChanged , current_addr , b ip .

current_addr))

79

765 # viewChanged = current_view != bv . f i l e . view

766 i f (valueChanged) : # or viewChanged) :

767

768 pr in t (” valueChanged ”)

769 #var_sta te = b ip . current_func . vars . copy ()

770 update_ns (bip , bv)

771 # event func2 = time . time ()

772 current_addr = bip . current_addr

773 current_view = bv . f i l e . view

774 try :

775 i f (

776 bv . f i l e . view == ”Graph :PE” or bv . f i l e . view == ” Linear :PE

”) : # Eventua l l y , determine i f b ip i s in the . t e x t

s e c t i o n

777 var_state = bip . current_func . vars

778 func_name = bip . current_func . symbol . name

779 func_type = bip . current_func . return_type

780 comment_state = bip . current_func . comments

781 h i g h l i gh t_s ta t e = bip . current_func . g e t_ ins t r_h igh l i gh t (

current_addr)

782

783 # i f (' c a l l ' in bv . ge t_disassemb ly (current_addr)) :

784 # ge t l i s t o f f u n c t i o n s

785 dict_funcs = func_types (bv)

786 # p r i n t (”−− s e l e c t e d a c a l l ”)

787

788 i f (bv . f i l e . view == ”Hex :PE”) :

789 data_state = bv . read (bip . current_addr , 1)

790 except Exception as e :

791 p r in t (”Found setValue except ion {}” . format (e))

792 # sys . e x i t () # Close thread

793 # undef ined f u n c t i o n s have no vars

80

794

795 #Updates the namespace o f the running k e rne l wi th the b i n j a magic

v a r i a b l e s

796 de f update_ns (bip , bv) :

797 g l o b a l current_addr , current_view

798

799 pr in t (” [∗] Pr in t ing view updates ! ”)

800 current_addr = hex (i n t (bip . current_addr))

801 p r in t (” Current_addr : ” + current_addr)

802

803 current_view = bv . f i l e . view

804

805 return

806

807 #Begins l o o k i n g f o r updates in the Binja i n t e r f a c e

808 de f start_watch (bv) :

809 obj = [o f o r o in gc . get_object s () i f i s i n s t a n c e (o ,

s c r i p t i n g p r o v i d e r . PythonScr ipt ingIns tance . Inte rpre te rThread)]

810 i f l en (obj) == 1 :

811 bip = obj [0]

812 e l s e :

813 r a i s e Exception (”Couldn ' t f i n d s c r i p t i n g p r o v i d e r . Sure you are

in the r i g h t ke rne l ?”)

814

815 setValue (bip , bv)

816 # update_ns (bip , bv)

817 thread ing . Timer (1 , start_watch , [bv]) . s t a r t ()

818

819 #Adds the provenance widge t to the Binja i n t e r f a c e

820 de f addStaticDockWidget (bv) :

821 mw = QApplication . a l lWidgets () [0] . window ()

822 dock_handler = mw. f indCh i ld (DockHandler , ' __DockHandler ')

81

823 dock_widget = ProvenanceNinjaDockWidget . create_widget (” Provenance

Ninja ” , dock_handler . parent () , bv)

824 dock_handler . addDockWidget (dock_widget , Qt . RightDockWidgetArea , Qt .

Ver t i ca l , True)

825 n o t i f i c a t i o n = myNot i f i cat ion (bv , dock_widget)

826 bv . r e g i s t e r _ n o t i f i c a t i o n (n o t i f i c a t i o n)

827 start_watch (bv)

828

829 #Sets the name o f the p l u g in as i t appears in the Binja UI

830 b ina ryn in ja . PluginCommand . r e g i s t e r (” Provenance Ninja ” , ” Generate

Provenance Graph” , addStaticDockWidget)

82

Bibliography

1. L. Craig, “U.s. passes new cybersecurity legislation in june

2022,” https://www.eccouncil.org/cybersecurity-exchange/career-and-

leadership/federal-cybersecurity-laws-june-2022/, 06 2022, accessed: 2022-12-05.

2. C. on Homeland Security and G. Affairs, Jun 2022. [Online]. Available:

https://www.congress.gov/bill/117th-congress/senate-bill/2520/text

3. p. 7, 2013.

4. B. Pérez, J. Rubio, and C. Sáenz-Adán, “A systematic review of provenance

systems,” Knowledge and Information Systems, vol. 57, pp. 495–543, 2018.

5. L. Carata, S. Akoush, N. Balakrishnan, T. Bytheway, R. Sohan, M. Seltzer, and

A. Hopper, “A primer on provenance,” Communications of the ACM, vol. 57,

no. 5, pp. 52–60, 2014.

6. A. M. Cuzzocrea et al., “Big data provenance: State-of-the-art analysis and

emerging research challenges,” in CEUR WORKSHOP PROCEEDINGS, vol.

1558. CEUR-WS, 2016.

7. W. C. Henry, “Analytic Provenance for Software Reverse Engineers,” Air

Force Institute of Technology, Tech. Rep., sep 2020. [Online]. Available:

https://apps.dtic.mil/sti/citations/AD1108805

8. T. O. B. Odden and R. S. Russ, “Defining sensemaking: Bringing clarity to

a fragmented theoretical construct,” Science Education, vol. 103, no. 1, pp.

187–205, 2019. [Online]. Available: https://onlinelibrary.wiley.com/doi/abs/10.

1002/sce.21452

83

https://www.congress.gov/bill/117th-congress/senate-bill/2520/text
https://apps.dtic.mil/sti/citations/AD1108805
https://onlinelibrary.wiley.com/doi/abs/10.1002/sce.21452
https://onlinelibrary.wiley.com/doi/abs/10.1002/sce.21452

9. P. Pirolli and S. Card, “The sensemaking process and leverage points for analyst

technology as identified through cognitive task analysis,” 01 2005.

10. M. K. Tennor, “Reverse Engineering Cognition,” Tech. Rep., 2015. [Online].

Available: https://apps.dtic.mil/sti/citations/AD1107807

11. G. Canfora and M. Di Penta, “New frontiers of reverse engineering,” 06 2007, pp.

326 – 341.

12. D. Votipka, S. M. Rabin, K. Micinski, J. S. Foster, and M. M. Mazurek, “An

observational investigation of reverse engineers’ processes,” Proceedings of the

29th USENIX Security Symposium, pp. 1875–1892, 2020.

13. M. Sikorski and A. Honig, Practical malware analysis: A hands-on guide to

dissecting malicious software by Michael Sikorski and Andrew Honig. No Starch

Press Inc, 2012.

14. “Ida pro,” https://hex-rays.com/ida-pro/, accessed: 2022-05-24.

15. “Binary ninja,” https://binary.ninja/, accessed: 2022-05-24.

16. “Ghidra,” https://ghidra-sre.org/, accessed: 2022-05-24.

17. “x64dbg,” https://x64dbg.com, accessed: 2023-01-13.

18. “Ollydbg,” https://www.ollydbg.de, accessed: 2023-01-13.

19. A. R. Bryant, R. F. Mills, G. L. Peterson, and M. R. Grimaila, “Eliciting a

Sensemaking Process from Verbal Protocols of Reverse Engineers,” vol. 2, 2011.

20. A. Bryant, “Understanding How Reverse Engineers Make Sense of Programs from

Assembly Language Representations,” ProQuest Dissertations and Theses, p.

265, 2012. [Online]. Available: http://gradworks.umi.com/34/98/3498579.html

84

https://apps.dtic.mil/sti/citations/AD1107807
http://gradworks.umi.com/34/98/3498579.html

21. “Lighthouse - a coverage explorer for reverse engineers,”

https://github.com/gaasedelen/lighthouse, accessed 2022-05-26.

22. “Sourcery pane for binary ninja,” https://github.com/mechanicalnull/sourcery_pane,

accessed 2022-05-26.

23. “bncov - scriptable binary ninja plugin for coverage analysis and visualization,”

https://github.com/ForAllSecure/bncov, accessed 2022-05-26.

24. “Katai,” https://github.com/Vector35/kaitai/blob/master/README.md, ac-

cessed 2022-05-26.

25. “Bncallgraph,” https://github.com/borzacchiello/bncallgraph, accessed 2022-05-

26.

26. C. Treude, F. Figueira Filho, M.-A. Storey, and M. Salois, “An exploratory study

of software reverse engineering in a security context,” 10 2011, pp. 184–188.

27. J. Baldwin, A. Teh, E. Baniassad, D. Rooy, and Y. Coady, “Requirements for

tools for comprehending highly specialized assembly language code and how to

elicit these requirements,” Requirements Engineering, vol. 21, 10 2014.

28. J. Maletic and A. Marcus, “Cfb: A call for benchmarks - for software visualiza-

tion,” 01 2003.

29. A. I. Globus and S. Uselton, “Evaluation of Visualization Software,” no. May, pp.

41–44, 1995.

30. A. Gazis and E. Katsiri, Web Frameworks Metrics and Benchmarks for Data

Handling and Visualization (PHP-Python), 04 2019, pp. 137–151.

31. H. Kienle and H. Müller, “Requirements of software visualization tools: A liter-

ature survey,” 07 2007, pp. 2 – 9.

85

32. ——, “Chapter 5 - the tools perspective on software reverse engineering: Re-

quirements, construction, and evaluation,” Advances in Computers, vol. 79, pp.

189–290, 12 2010.

33. “Process explorer v17.02,” https://learn.microsoft.com/en-

us/sysinternals/downloads/process-explorer, accessed: 2023-02-01.

34. “Windows performance monitor overview,” https://techcommunity.microsoft.com/t5/ask-

the-performance-team/windows-performance-monitor-overview/ba-p/375481,

accessed: 2023-02-01.

35. “In-depth .net memory profiling,” https://memprofiler.com, accessed: 2023-02-

01.

36. J. Freire, D. Koop, E. Santos, and C. T. Silva, “Provenance for computational

tasks: A survey,” Computing in Science Engineering, vol. 10, no. 3, pp. 11–21,

2008.

37. L. Moreau, B. Clifford, J. Freire, J. Futrelle, Y. Gil, and P. Groth, “The Open

Provenance Model,” no. August 2007, 2010.

38. E. D. Ragan, A. Endert, J. Sanyal, and J. Chen, “Characterizing Provenance in

Visualization and Data Analysis : An Organizational Framework of Provenance

Types and Purposes,” 2015.

39. “Pyside6,” https://pypi.org/project/PySide6/, accessed 2022-10-31.

86

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704–0188

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including
suggestions for reducing this burden to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704–0188), 1215 Jefferson Davis Highway,
Suite 1204, Arlington, VA 22202–4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection
of information if it does not display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD–MM–YYYY) 2. REPORT TYPE 3. DATES COVERED (From — To)

4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

6. AUTHOR(S)

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION REPORT
NUMBER

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION / AVAILABILITY STATEMENT

13. SUPPLEMENTARY NOTES

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF:
a. REPORT b. ABSTRACT c. THIS PAGE

17. LIMITATION OF
ABSTRACT

18. NUMBER
OF
PAGES

19a. NAME OF RESPONSIBLE PERSON

19b. TELEPHONE NUMBER (include area code)

Standard Form 298 (Rev. 8–98)
Prescribed by ANSI Std. Z39.18

23–03–2023 Master’s Thesis Sept 2021 — Mar 2023

Improving Accessibility and Efficiency of Analytic Provenance Tools for
Software Reverse Engineering

through Native Visualization Support

2nd Lt Caleb W. Richardson

Air Force Institute of Technology
Graduate School of Engineering and Management (AFIT/EN)
2950 Hobson Way
WPAFB OH 45433-7765

AFIT-ENG-MS-23-M-054

DISTRIBUTION STATEMENT A:
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

Reverse engineering is a vital technique for identifying and mitigating cyber threats. Yet, despite its importance, reverse
engineering is a time-consuming process. Provenance tools help to improve the workflow of reverse engineers by providing
an accessible method of viewing their flow through a binary. The current state-of-the-art provenance tool for reverse
engineering software called SensorRE, leverages an external server, web browser, and a large array of javascript libraries.
This thesis presents Provenance Ninja, a software reverse engineering tool developed in Python that runs directly within
Binary Ninja. Provenance Ninja captures reverse engineers’ provenance data and provides an interactive graph within the
reverse engineering environment. The performance of Provenance Ninja is evaluated against SensorRE by measuring
functionality and efficiency. This research demonstrates that it is possible to design a provenance tool to run natively in
the reverse engineering software that passes all functionality tests when compared to SensorRE and shows statistically
significant efficiency improvements at a 95% confidence level in memory utilization and runtime from this approach. The
results of this study contribute to the field of software reverse engineering and have the potential to enhance the
effectiveness of cyber threat mitigation efforts.

reverse engineering, provenance, Binary Ninja,

U U U UU 95
Lt Col Wayne C. Henry, AFIT/ENG

(937) 255-3636, ext 7243; wayne.henry@afit.edu

	Improving Accessibility and Efficiency of Analytic Provenance Tools for Reverse Engineering
	Recommended Citation

	Abstract
	Introduction
	Problem Background
	Problem Statement
	Approach
	Assumptions
	Document Overview

	Background and Literature Review
	Overview
	Sensemaking
	Software Reverse Engineering
	Static Analysis
	Dynamic Analysis
	Sensemaking in Reverse Engineering

	Visualization in Analytics
	Designing Tools and Evaluations around Requirements
	Qualitative Evaluations
	Quantitative Evaluations
	Evaluation Tools

	Provenance
	Implementation Technologies
	Background Summary

	Design and Methodology
	Overview
	System Summary
	System Description
	Constructing the Provenance Graph
	Capturing Input
	Undo
	Verbose Mode and Collapsing the Graph

	Tools and Implementation Requirements
	Usage Scenario
	Experiment Hypothesis
	Functionalitity Testing Setup
	Function Test
	Variable and Type Test
	Comments and Highlighting Test

	Experimental Design Setup
	Response Time
	Memory Usage
	Choice of Statistical Test

	Ensuring Isolation
	Randomization and Threats to Validity
	Methodology Summary

	Results and Analysis
	Overview
	Functionality Testing
	Performace Testing
	Gathering Data
	Memory Analysis Results and Observations
	Runtime Analysis Results and Observations

	Results Summary

	Conclusions
	Research Contributions
	Research Limitations
	Future Work
	Concluding Thoughts

	Software Listings
	Bibliography

