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Abstract

In previous work conducted at AFIT, GPOPS-II (a pseudo-spectral optimal con-

trol solver) was successfully implemented for finding optimal controls and optimal

trajectories of a helicopter in total power loss scenarios. GPOPS-II was deemed a

useful tool for generating pre-flight data (such as an HV diagram a.k.a “the death

curve), although due to the capabilities of the program, the solutions were provided in

time history form only and no explicit control law (eg. u=f(x,t)) could be produced.

Furthermore, GPOPS-II was not applicable for real time emergency use, as calcula-

tion times were on the order of minutes. Ideally, application in a real time emergency

would consist of mapping the algorithms solutions to a visual aid inside the cock-

pit, possibly presentable on a HUD or MFD. Due to the limitations aforementioned,

recent research has been conducted in using deep reinforcement learning algorithms

to generate an optimal control law for a helicopter in such a scenario, which ulti-

mately would allow for design of various cockpit pilot aids if proven successful. Such

pilot aids are predicted to reduce pilot workload during execution of an emergency

powerless landing, and to overall increase the probability of landing safely in such

an event. The proposed topic discusses the use of the Proximal Policy Optimization

(PPO) algorithm in order to find an optimal control policy for a helicopter in a total

power loss emergency landing scenario. The task consists of designing and train-

ing an actor neural network and a critic neural network using the PPO algorithm,

along with developing the dynamic equations of motion for the helicopter, defining a

reward structure and tweaking relevant hyper-parameters. The PPO algorithm has

been proven overall feasible for bringing a simplistically modeled helicopter to safe

landings over a wide range of initial flight conditions.
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ESTIMATION OF OPTIMAL FLIGHT CONTROL FOR A HELICOPTER IN A

TOTAL POWER LOSS SCENARIO USING PROXIMAL POLICY

OPTIMIZATION

I. Introduction

1.1 Chapter Overview

When a helicopter loses engine power, the pilot is expected to fully reduce the

main rotor collective pitch and lower the nose pitch angle if necessary as initial steps

of an emergency landing procedure. Given a high enough altitude and velocity at the

moment of engine power loss, the pilot must perform a maneuver called autorotation.

Autorotation is a maneuver which minimizes the total energy loss from the helicopter

during descent, thus preserving it for a soft landing. The ability for a helicopter

to land safely depends on a number of factors including helicopter properties (e.g.

weight, chassis shape and main rotor drag), environmental properties (such as air

density), initial altitude, initial airspeed, flight-path and most importantly - pilot

skill. The autorotation maneuver, combined with the psychological distress of an

emergency scenario, can require intense pilot workloads. An example of intense pilot

workload tasks from the fixed wing world is an F-18 landing on an aircraft carrier

in rough sea and weather conditions. In order to mitigate the risks involved in jet

carrier landings, engineers have developed Optical Landing (OL) systems - visual aid

lighting systems planted on carriers which provide pilots with glide-path information

on the terminal phase of the approach.

Previous work conducted has shown that optimal control algorithms, specifically
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General-Purpose Optimal Control Software - II (GPOPS-II), were useful for simulat-

ing helicopter dynamics in a power loss scenario and could provide insight on flight

safety margins and overall emergency landing techniques. On the contrary, optimal

control methods lacked the ability to provide instant real-time data.

Due to the drawbacks of optimal control aforementioned, this thesis aims to test

the feasibility of using a Deep Reinforcement Learning (DRL) method, specifically

Proximal Policy Optimization (PPO), in order to produce an optimal controller for

a helicopter in a total power loss scenario, and to be able to regenerate an Height-

Velocity (HV) diagram. Achieving the goals above could possibly provide a means of

visual aid to a pilot, thus reducing the workload in the cockpit and mitigating flight

risks, and could even be implemented in helicopter simulators for training. The visual

aid could be for instance a Heads Up Display (HUD) where the recommended flight

parameters (such as torque and pitch angle) are presented to the pilot at each point

in time. Both implementations could potentially decrease the rate of casualties in

such emergency scenarios.

1.2 Autorotation

The term autorotation refers to the state of flight where the main rotor RPM is

maintained or increased aerodynamically, without receiving power from the engines.

This is typically performed by maintaining a controlled descent at a specific range

of airspeeds defined by the helicopter manufacturer. Descending at these airspeeds

generates an upward airflow through the rotor, which in turn preserves its RPM.

This rotorcraft flight condition is analogous to the glide of a fixed-wing aircraft; lift

is still produced but at a much lesser extent than during normal operations with

full engine power. Autorotations are typically performed during emergencies after

a helicopter experiences a mechanical failure of either the engine, driveshaft, or tail
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rotor. Consequently, an autorotation is also commonly performed when there are

other emergencies on board, such as a fire or control system malfunction, requiring

the helicopter to land quickly [6]. It is important to mention that the autorotation

maneuver can only be performed at a high enough initial airspeed and initial velocity

due to the time required to reach the typical autorotation airspeeds. In the event of

engine power loss at a low airspeed and a low altitude, the autorotation technique

cannot be used although a successful landing is still attainable.

An autorotation maneuver can be described in three basic phases, which are dis-

cussed in more detail in rotorcraft flight handbooks such as [6] and [7]. The first

phase is the entry into autorotation, which occurs immediately after the helicopter

loses engine power. Initially, the rotor slows down, since it no longer has the power

required to maintain its rotational momentum. The collective pitch is then lowered

by the pilot in order to decrease the rotor’s drag and lift. Furthermore, the nose

pitch of the helicopter is adjusted such that the autorotation airspeed (defined by the

manufacturer) is obtained. Performing the above actions causes air to flow upward

through the main rotor, which in turn preserves the rotor angular velocity without

the need for an external power source. The pilot’s reaction time during this initial

phase significantly affects the autorotation. The next phase is steady-state autoro-

tation during which the helicopter continues to descend to maintain its rotor RPM,

at the defined autorotation airspeed. As the helicopter approaches the ground, the

third and final phase of the maneuver is performed. The pilot performs a flare before

touchdown in order to bleed off airspeed and to minimize the rate of descent. The

flare is performed by increasing the nose pitch of the helicopter which increases the

airflow through the main rotor, thereby generating more lift. Finally, the pilot levels

the helicopter in order to prevent tail-strike, and gradually increases the main rotor

collective pitch in order to allow for a soft and safe touchdown. In turn, the rotor

3



speed decreases during the flare and the increase in main rotor collective pitch. The

general autorotation scheme provides a relative measure for the analysis of artificially

generated control inputs to a helicopter during an emergency descent. Figure 1.1

illustrates these phases of an autorotation.

Figure 1.1. A Helicopter During Autorotation [1]

1.3 HV Diagram

The ability for a helicopter to land safely within its structural limits following

an autorotation is contingent on the helicopter’s initial forward airspeed and height

above the ground when engine power is lost. HV diagrams show the combination of

these two factors based on the particular helicopter in question, the gross weight, the

density altitude and sometimes external configuration. Figure 1.2 shows an example

HV diagram for low-speed flight. The shaded portion of the diagram depicts the

unsafe flight region in which a safe landing could not occur if engine failure occurs.

In this region, the rotor speed does not have enough time to recover after its initial

drop to perform a successful flare. Without a successful flare, the helicopter impacts

the ground at a damaging velocity. The dividing curve between the safe and unsafe
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regions on the HV diagram is referred to as the “deadman’s curve” and includes three

key, defining points: the low hover point, high hover point, and knee point. The two

hover points represent the lowest and highest points on the curve, respectively. Above

the upper portion of the curve, the rotor speed can recover enough during the descent

to flare and thus land safely. Below the lower portion of the curve, the height of the

helicopter above the ground is not high enough for the helicopter to accelerate to

unrecoverable speeds, since it will touch down on the ground very quickly after the

power loss. Hence, the power loss in this region allows for a safe landing. As forward

airspeed increases, the autorotative descent rate decreases [8]. This leads to the

knee point where the upper and lower portions of the curve intersect. HV diagrams

typically also have a high-speed unsafe region near the ground where the helicopter’s

high airspeed does not allow for a sufficient reduction in velocity without the tail

striking the ground prior to touchdown. These two unsafe regions help create a flight

path for pilots to follow during routine takeoffs and landings by displaying flight

regions to avoid. Knowledge of the HV diagram for a specific helicopter provided

by the manufacturer can be a useful measure for comparison when analyzing new

computational methods for predicting helicopter trajectories in a power loss scenario,

such as optimal control methods or DRL methods.
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Figure 1.2. Example Height-Velocity Diagram [2]

As described above, HV diagrams inform pilots of which regions of flight would be

hazardous if engine failure were to occur there. In addition to having HV diagrams for

total engine power loss, multi-engine rotorcraft have additional HV diagrams for One

Engine Inoperable (OEI) flight in which only one engine fails. Naturally, the unsafe

region is smaller for OEI flight than for total power loss, since there is still some

power supplied to the rotor from the remaining engine(s). With multiple engines, the

chances of total power loss is significantly reduced. Although a majority of military

helicopters are equipped with at least two engines, and the probability of multiple

engines failing simultaneously are extremely low, this thesis aims to research the

feasibility of using a DRL method for the worst case scenario being total power loss

such that all areas of risk are covered.
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1.4 Research Objectives

This thesis aims to contribute to research in the field of DRL combined with

flight dynamics, specifically with regards to predicting optimal flight controls and

trajectories for a helicopter in a total power loss scenario. The objectives of this

research are as follows:

• Primary Objective: Research feasibility and effectiveness of using DRL methods,
specifically the PPO algorithm, to generate an optimal control policy for a
helicopter in a total power loss scenario.

• Develop a simplistic mathematical model for helicopter dynamics.

• Analyze the trajectories of a helicopter in a total power loss scenario given a gen-
erated optimal control policy.

• Generate an HV diagram for the helicopter.

1.5 Thesis Overview

This chapter has introduced the topics of autorotation and HV diagrams, and has

briefly discussed visual pilot aids for workload reduction. Furthermore, this chapter

has provided the main objectives of this research. Chapter 2 provides background on

prior research into estimating optimal control paths for helicopters in a total power

loss scenario, using both pseudo-spectral optimization methods and DRL methods.

Furthermore, Chapter 2 provides a buildup to the PPO algorithm, from classic Rein-

forcement Learning (RL) and Markov Decision Processes to the derivation of policy

gradient algorithms. In Chapter 3 the dynamic equations of motion for the heli-

copter model are derived, and the methodologies for tuning and training the PPO

agent are explained. Chapter 4 provides the results of the hyper-parameter selection

phase, the training phase and the test phase of the PPO algorithm with the helicopter

model environment. Lastly, Chapter 5 states the conclusions from this research and

recommendations for future research.
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II. Background

2.1 Chapter Overview

This chapter discusses functional optimization and control methods and the pre-

vious research conducted using such methods for predicting optimal helicopter flight

paths and for generating Height-Velocity (HV) diagrams. Moreover, the drawbacks

of functional optimization are presented, along with the proposed solution of re-

placing functional optimization with Deep Reinforcement Learning (DRL) methods.

This chapter also provides an overview of neural networks, which serve as universal

function approximators and can be used to approximate optimal control laws over a

wide range of mission tasks. In addition, this chapter discusses classic Reinforcement

Learning (RL) as a background to more advanced DRL methods. The development

and derivations of various continuous state-action DRL algorithms are elaborated,

beginning with the classic vanilla policy gradient algorithm and ending at the Prox-

imal Policy Optimization (PPO) algorithm. In addition, a background to reward

shaping is discussed, which serves as the feedback element of a reinforcement learn-

ing environment. Lastly, this chapter presents similar works in the fields of DRL for

helicopters in a total power loss scenario.

2.2 Functional Optimization and Control

Optimal control theory provides a means of determining the control inputs into

a system that optimize a desired performance criterion while satisfying physical con-

straints on the system [9]. One of the first steps in formulating an optimal control

problem is to develop a mathematical model of the system being analyzed. These

models are commonly represented in state variable form, consisting of a set of state

variables (states), which describe specific components of the system, and control vari-
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ables (controls), which describe the inputs to the system that drive the states to

optimize a performance index. The state and control variables are related by a set

of first-order differential equations that describe the dynamics of the system. Fi-

nally, a scalar performance index (or objective/cost function) is selected to be either

minimized or maximized. The set of controls along with the associated states that

minimize the performance index while satisfying the constraints on the system con-

stitute the solution of the optimal control problem.

Given the complex nature of most optimal control problems, optimal control so-

lutions are typically determined using direct numerical methods rather than being

solved indirectly. Indirect methods apply the calculus of variations to the optimal

control problem, which for complex dynamic environments such as a helicopter in

flight can result in many highly non-linear equations which are highly difficult to

solve analytically. Furthermore, the equations derived from the calculus of variations

contain Lagrange multipliers (namely co-states) which may not have any physical sig-

nificance, and thus added difficulty can arise when solving for them. This is especially

difficult for certain instances where an initial solution guess is required. In contrast,

direct (collocation) methods discretize and parameterize the continuous optimal con-

trol problem into a Non-Linear Programming (NLP) problem and find the resulting

NLP solution [10]. Solving an optimal control problem using direct methods is gen-

erally considered more practical due to the fact that they can handle very complex

and non-linear state models, whereas indirect methods are generally impractical for

complex physical problems.

One type of direct collocation methods are pseudospectral methods. In pseu-

dospectral methods, the optimal control problem is transcribed into a NLP problem

using polynomials to parameterize the states and controls, and a Gaussian quadrature

to collocate the differential-algebraic equations [11]. Rao et al. developed a Matrix
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Laboratory (MATLAB) software called General-Purpose Optimal Control Software -

II (GPOPS-II), which utilizes pseudospectral methods and sparse nonlinear program-

ming to solve optimal control problems [12]. GPOPS-II is a popular programming

tool used globally and moreover, has been used at The Air Force Institute of Tech-

nology, WPAFB (AFIT) to solve various optimal control problems. Although direct

method solvers such as GPOPS-II have proven to be powerful tools for calculating

optimal trajectories, they cannot generate closed form analytical control laws which

indirect methods can do. For instance, the Linear Quadratic Regulator (LQR), a

special form of indirect optimal control, always provides a control law in the form of

u = −K ∗X(t).

Hence, if the LQR problem is analytically solvable (which may not be the case

for a complex problem), a value for the control law can be calculated given any state

vector. On the contrary, direct method solvers such at GPOPS-II can only provide

the values of the controls in time history form from the initial time to the final

time. Therefore, with regards to optimal flight trajectories of a helicopter during

a power loss scenario, using GPOPS-II is a useful tool for simulating an optimal

flight trajectory or for generating pre-flight data such as an HV diagram - but is

not useful when the objective is to derive a control law as a function of state for

real world implementation in real-time situations. Such an implementation could be

expressed as a visual pilot aid inside the cockpit of a helicopter, for example a Heads

Up Display (HUD) providing the necessary helicopter state and control info to the

pilot in command in an engine power loss scenario.

In contrast to optimal control methods which aren’t practical for real-time ap-

plications, DRL methods can be practical for such applications as they can be used

to generate a global control law, defined by a neural network, relating a helicopter’s

states to the required controls necessary for a safe emergency landing. Hence, this
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thesis researches the use of DRL methods as a means to calculate optimal control

laws of a helicopter in an engine power loss scenario.

2.3 Neural Networks

The transition between classic RL and DRL generally consists of replacing the

notion of a look-up table typically with an Artificial Neural Network (ANN) (synony-

mously referred to as a Deep Neural Network (DNN)). An ANN is a group of neurons

which hold connections between one another, that’s purpose is to understand and

translate a data input of one form into a desired output, usually in another form. In

general, an ANN can be considered a universal function approximator. The concept

of the ANN was inspired by human biology and the way neurons of the human brain

function together to understand inputs from human senses.

An artificial neuron (also referred to as a node) is essentially a scalar function in

itself - the neuron can receive a number of inputs and can output only one scalar

value. The neuron typically performs an activation on a linear operation in the form

of:

y = f(b+ w1x1 + w2x2 + w3x3 + ...+ wnxn) (2.1)

The node linearly transforms the multi-scalar input to a single scalar value, which

is then sent into an activation function (such as “tanh”, “sigmoid”, “ReLu”, etc.),

which finally produces the output of the neuron. Figure 2.1 shows a visual represen-

tation of a neuron/node.
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Figure 2.1. Artificial Neuron Visual Depiction

An ANN consists of an input layer, one or more hidden layers and an output layer.

Each layer holds a set of neurons, ranging from as little as one neuron to as many as

thousands. A fully connected (a.k.a dense) ANN is a network in which the inputs to

a neuron in any layer are the outputs of all the neurons in the previous layer, and the

output of that neuron is sent to every single neuron in the next layer. See Figure 2.2

for a visual representation of an ANN.

Figure 2.2. ANN Visual Depiction

The study of machine learning applications which utilize neural networks is called

“deep learning”. Due to the typically large neural network and data-set sizes involved

with most practical deep learning applications, and specifically with deep reinforce-

ment learning, the numerical weight and biases update steps are calculated using

mini-batch stochastic gradient descent as opposed to regular gradient descent. The
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neural networks weights and biases are updated using the back-propagation algo-

rithm. Many times gradient descent optimizers are added to deep learning processes

in order to decrease training times. Examples of such optimizers are AdaGrad and

RMSprop, and the Adam optimizer which holds elements of the latter optimizers and

is generally considered the most effective stochastic gradient descent optimizer.

Although majority of deep learning applications use regularization techniques as

a method for reducing training variance and thus reducing the possibility of over-

fitting, it is less common to apply regularization methods to the neural networks used

in DRL algorithms. Although being less common, research in the field [13] has shown

that applying regularization techniques (commonly used for supervised learning) with

policy based DRL methods can improve performance. Nonetheless, this thesis did not

incorporate any regularization methods.

For DRL applications which utilize dynamic equations of motion, such as the

research topic of this thesis, the general consensus is that 2 hidden layers are enough

to reach the task goal, and only adjustment of the amount of nodes per layer is

necessary.

2.4 Reinforcement Learning

RL is an area of machine learning concerned with how intelligent agents ought to

take actions in an environment in order to maximize the notion of cumulative reward.

An agent is an intelligent body that makes decisions or takes actions (for example,

a human being), an environment holds all the possible states an agent can be in or

perceive (for instance, the universe is an environment for the human species), an agent

receives a reward when it reaches certain states in the environment, and an action

is something that an agent actively performs such that the environment is possibly

altered (for instance, a human pressing the gas pedal in a vehicle will change the
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vehicles position in the universe). Regarding further terminologies, an episode is a

chronological series of actions and states, starting with an initial state and ending with

a terminal state. In the case of this thesis, the initial state will be defined by the initial

height and initial velocity of the helicopter at moment of power loss, and the terminal

state by definition will be the state at the moment of touchdown. Furthermore, a

policy is somewhat analogous to a control law - it is essentially a mathematical model

relating the current state to a desired action, and can be iteratively improved through

a reinforcement learning process. Lastly, during any reinforcement learning process,

a “Q-Value” (also named “expected future rewards” and labeled “q”) is predicted for

every state-action pair. The Q-Value is a prediction of how good a certain state is

given a certain action taken at that state.

In classical RL, all the combinations of possible actions and possible states are

generally described by a “Q-Table”, where each value in the Q-Table holds a Q-Value.

For example, the “Frozen-Lake” [3] environment is a 4x4 grid where each space on the

grid is either ice or a lake. The agent can attempt to move up, down, left or right on

any space in the grid, giving a total of 4 possible actions and 16 possible states. See

Figure 2.3 for a visual representation of the frozen lake environment and see Figure

2.4 for an example of a Q-Table corresponding to the frozen lake environment.

Figure 2.3. OpenAI-Gym Frozen Lake Environment [3]
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Figure 2.4. Frozen Lake Example with Q-Table [4]

The agent in the environment always starts an episode on coordinate (1,1) on the

grid, where its main objective is to reach the desired terminal coordinate on the grid,

(4,4). Since (4,4) is the desired terminal coordinate, the agent shall receive a high

reward if it manages to reach it. On the contrary, if the agent falls into one of the

lakes in its numerous attempts to reach the desired terminal state, it shall receive

a penalty (a.k.a a negative reward). The agent moves through the grid until any

terminal state is reached, in an episodic manner. During this, rewards and penalties

are accumulated and the policy and/or the Q-Table is updated in an iterative manner.

In classic RL, the Bellman equation [14] is used to update the Q-Table, and the policy

is many times defined as picking the action which provides the highest Q-value. See

Figure 2.5 for a general flow diagram of a classic Q-Table based RL network.
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Figure 2.5. Reinforcement Learning General Flow Diagram

Classical RL is limited to discrete action spaces and also discrete state spaces,

as observed in the frozen-lake example above. These limitations are problematic in

many real-world applications where both the action and state spaces are continuous.

Furthermore, classic RL utilizes a Q-Table which is essentially a look-up table, so even

if the continuous environments could be transformed to discrete domains, the com-

putational memory required to keep track of all Q-values would be vast for physically

realistic environments, and hence this approach would be impractical.

A general solution to these problems is to replace the notion of Q-Tables with a

DNN, which will be elaborated on in the next sections.

2.5 Markov Decision Processes in Reinforcement Learning

A Markov process (or Markov chain) is defined as a sequence of possible events

in which the probability of a future event depends only on the state attained in the

current event. Mathematically, this property can be described in Equation 2.2.

P(St+1|St) = P(St+1|St, St−1, St−2, ..., S1) (2.2)
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In other words, a Markov process is a process in which each state holds all of the

information of the preceding states. This is considered a first order Markov process,

whereas for instance in a second order Markov process the probability of an event

would depend on the past 2 preceding states. In most cases, any fully observable

environment with a fully defined state-space could allow for the process occurring

in it to be defined as Markovian, since all information is attainable and all history

is encapsulated in the current state inside the state space. For example, consider a

container with 5 red balls and 2 green balls, where each event consists of removing

a ball at random without returns. If a state is defined only as the color of the ball

removed in the most recent event, then one cannot accurately predict the probability

of removing a ball of certain color in the next event since knowledge of past history

is required, and the history itself is not defined and saved as a state. Whereas, if

every current state consists of the colors of all balls removed in the sequence of all

the events that have already occurred, then the process is by definition Markovian.

Furthermore, blackjack is an example of a partially observable game where the only

time it can be considered a Markov process is if both the dealer and the player have

exceptional memory and can memorize all cards dealt between shuffles, thus allowing

for a state to consist both of cards in hand and cards already dealt previously. Lastly,

dice games like backgammon can be considered Markov processes as the next move is

dictated only by the current state and a dice roll. The thesis research topic assumes

that enough independent state variables are taken into account such that the process

behind the dynamics is (first order) Markovian. An example where this assumption

wouldn’t hold is if the velocity of an object cannot be directly observed, and must be

estimated by differentiation of the past 2 location observations - for which then the

process would only be considered Markovian of second order.

The importance of the Markov property is that it enables theoretical proofs, such
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as proofs of convergence to optimal policies and optimal value functions for most

reinforcement learning algorithms. In fact, majority of the reinforcement algorithms

available (PPO included) rely on the Bellman Equation [15], which stems itself from

the assumption that the underlying process is Markovian (a.k.a Markov assumption).

A reinforcement learning problem is called a Markov Decision Process (MDP) if

each state of the environment holds the Markov property. In the context of reinforce-

ment learning, an MDP can be characterized by 5 elements:

1. S - The set of all possible states (a.k.a state space) obtainable in the environment

under the Markov assumption

2. A - The set of all possible actions the agent can execute in the environment,

for every state.

3. P - The probabilistic transition function between current state and possible

future states given a current action. The transition function is defined as

P(s, a, s′) = P(St+1 = s′|St = s, At = a), where P is the probability opera-

tor. This function can be discarded in any formulations if the environment is

completely deterministic, meaning any action At = a taken from a state St = s

will always cause the agent to reach state St+1 = s′. Furthermore, this function

is not applicable when using a model-free RL algorithm.

4. R - Reward function which holds the expected rewards given to the agent when

transitioning from one state to another. The reward is statistically expected if

the transition between states is non-deterministic or if the reward function is

not static. The reward function is defined as R(s, a) = E(Rt+1|St = s, At = a),

where E is the expected value operator.

5. γ - Discount factor necessary for convergence of key variables in the RL al-

gorithms. For the necessity of convergence, the discount factor ranges from
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γ ∈ [0, 1]

Since the notion of RL is to maximize a cumulative reward at any given time, one

can define the term Gt as total discounted future rewards at time t:

Gt = Rt+1 + γRt+2 + γ2Rt+3 + ...+ γn−1Rtn =
∞∑
i=0

γiRt+1+i (2.3)

Past rewards are not taken into account because the past cannot be altered or

affected, and hence cannot provide useful information for future decisions. Further-

more, the total rewards must be discounted in order to insure convergence to a finite

number if for any reason the process is endless. The closer γ is to a value of 0, the

less future rewards are accounted for and the more immediate rewards are accounted

for in the RL process. The opposite is true for values of γ close to 1

In a RL task, the agent makes its decisions of actions to take through a policy

π. A policy for a MDP represents a mapping from states to actions, which describes

the overall behavior of an agent. In classic RL the policy is typically value-based,

meaning the mapping from states to actions is not defined explicitly, rather derived

from Q-values such that π = argmaxa(Q(s, a)). In continuous state-action DRL, the

mapping is explicitly represented by a neural network which outputs actions given an

input of a state. The definition of the state value V (s) under policy π is described in

Equation 2.4.

Vπ(s) = Eπ(Gt|St = s) = Eπ(Σ
∞
i=0γ

i(Rt+1+i|St = s)) (2.4)

Furthermore, the Q-value Q(s, a) under policy π is defined in Equation 2.5.

Qπ(s, a) = Eπ(Gt|St = s, At = a) = Eπ(Σ
∞
i=0γ

i(Rt+1+i|St = s, At = a)) (2.5)
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Additionally, the state value is by definition a policy weighted average of the

Q-value over all possible actions available given a state, as shown in Equation 2.6.

Vπ(s) =
∑
a

π(a|s)Q(s, a) = Eπ[Q(s, a)] (2.6)

∑
a

π(a|s) = 1 (2.7)

The derivations above, defined under the Markov assumption, allow for further

derivations of RL and DRL methods. Policy gradient methods are a family of DRL

methods which define the policy as a numeric function represented by a neural net-

work. Defining the policy this way allows for solving RL problems with continuous

state-action spaces efficiently. In order to optimize the policy with the goal to max-

imize rewards, an objective function containing the policy must be defined. The

sections below contain the derivation to the classic policy gradient method, as well

as further improvements to more sophisticated algorithms.

2.6 Deep Reinforcement Learning

2.6.1 Development Background

DRL is an improved approach to classic RL. Although the first accounts of the

term RL date back to the 1960’s, the first successful application of DRL was only

in 1992 [16]. Gerry Tesauro developed an algorithm named “TD-Gammon”, which

was the first known successful account of a DNN being trained using reinforcement

learning techniques rather than classical supervised learning techniques. As the name

suggests, the algorithm was an autonomous backgammon player. The algorithm

would initialize with little to no knowledge of the game, and would only contain

information on what states of the game were considered favorable or unfavorable. The

neural networks were trained by having the algorithm play against itself for numerous
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episodes, where at that point it was capable of beating world class backgammon

players. Although stated above is a successful account of DRL, the subject only

started to expand heavily around the year 2012.

The first DRL algorithms would only work in discrete state and action spaces,

such as the backgammon example stated above. Later on, newly developed algorithms

could essentially handle continuous state spaces, although were still limited to discrete

action spaces. In 2013, Volodymyr Mnih et al. from DeepMind, had published the

first paper [17] on the Deep Q-Network (DQN) algorithm. The paper discussed the

algorithm and showed its performance on various Atari games. This algorithm is

considered one of the first to revolutionize the use of an ANN with RL. Although the

success of this algorithm was apparent, it was limited to discrete actions.

In 2015, DeepMind developers released a paper [18] on the Deep Deterministic

Policy Gradient (DDPG) algorithm, which was one of the first DRL algorithms to

allow for continuous action spaces alongside continuous state spaces. The algorithm

belongs to the “Actor-Critic” family - a group of DRL algorithms which relies on

policy gradient methods and policy iteration such that continuous actions can be

produced.

Finally, in 2017 John Schulman et al. from OpenAI released a paper [5] on the

PPO algorithm, which outperformed many of the other online policy gradient methods

at the time in various Atari games. Due to this, the PPO algorithm was selected as

the primary algorithm of choice for this thesis.

2.6.2 Overview

As mentioned previously, a solution for solving RL problems in a continuous state-

action space is to replace the notion of Q-Tables with a DNN. Since neural networks

are universal function approximators, they can be used to predict expected future
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rewards or policy functions as a function of any state. Hence, instead of iteratively

updating a Q-Table, the weights of the DNN would typically be updated using back-

propagation algorithms employing a gradient descent/ascent method as mentioned

before. The PPO algorithm investigated in this thesis belongs to the Actor-Critic

policy gradient family, which on the basic level holds an actor network that’s purpose

is to generate a policy providing an action given any state, and a critic network that’s

purpose is to estimate the expected future reward given any state. Using a DNN

instead of look-up tables provides a means for training agents in continuous state and

action space environments with practical requirements for computational memory.

see 2.6 for a general flow diagram of a DRL network.

Figure 2.6. Actor-Critic General Flow Diagram

For each action type the actor network outputs a mean action value and option-

ally a variance of the corresponding action value. In some cases the variance can

be defined manually and annealed over time for each action type. The mean and
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variance values define the parameters of a Gaussian probability density function.

The action values themselves are then sampled through the Gaussian density func-

tions corresponding to each action type. Essentially, even though a fully observable

deterministic environment (which for instance doesn’t experience any random distur-

bances) doesn’t hold any stochastic elements, and the succeeding state can always be

fully determined from the current state and the action taken, a probability density

function over the action space is still defined for the policy to allow for exploration

of the agent in the environment. Hence, stochastic policies are necessary for any

reinforcement learning task to ensure both exploration and exploitation. Thus, for

N action types, the policy output is defined as a set of N Gaussian distributions.

As mentioned previously, each Gaussian distribution N(µ, σ) is defined by a varying

mean action parameter and varying standard deviation (either output from the actor

network of defined manually), such that:

π(St = s) = [N1(µ1(s), σ1(s)),N2(µ2(s), σ2(s)), ...,NN(µN(s), σN(s))] (2.8)

Furthermore, due to the fact that reward distributions can be sparse over the

state-space, and some form of constant feedback is required for the agent to assess

itself at any possible state. The critic’s job is to estimate as best as possible the

expected future rewards of any state-action pair. In classic RL, the critic is typically

represented by the scalar values that appear inside a Q-Table as described in the

previous section “Reinforcement Learning”. The critic is described by an ANN where

the input to the network is the state vector of the agent, and the output of the network

is a singular scalar value representing the expected future rewards (a.k.a state value

denoted V (s)) from that state. In PPO the critic network does not require an input of

the action due to mathematical manipulations which allow for the unbiased estimation

of the Q-value Q(s, a) of a particular action taken at a particular state.
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For this thesis, the actor network will serve as a flight controller, where the inputs

to the actor network will be the dynamic states of the case study helicopter model

(for example; altitude above ground level, velocity, rate of descent, etc.), and the

outputs sampled from the Gaussian distributions will be defined control inputs to the

helicopter model.

2.6.3 Vanilla Policy Gradient Algorithm

Since the objective is to maximize the discounted cumulative reward at all states,

the cost function necessary for updating the actor and critic network weights (θ and

w respectively) can be defined as the following:

Maximize J(θ, w) s.t J(θ, w) = Vπ(s) =
∑
a

πθ(a|s)Qw(s, a) (2.9)

The gradient of the cost function can then be derived as follows:

∇θJ(θ, w) =
∑
a

∇πθ(a|s)Qw(s, a) =
∑
a

πθ(a|s)
∇πθ(a|s)
πθ(a|s)

Qw(s, a) (2.10)

∇θJ(θ, w) = E[
∇πθ(a|s)
πθ(a|s)

Qw(s, a)] = E[∇lnπθ(a|s)Qw(s, a)] (2.11)

Generally, the vanilla policy gradient has low bias but high variance. In order to

reduce the variance, a baseline is introduced to the original vanilla policy gradient

term. The baselines purpose is to bring the mean gradient values to zero, such that

the algorithm can easily differentiate between a good policy (gradient is positive) and

a bad policy (gradient is negative). The typical baseline used is called the Advantage

Function, which is defined in Equation 2.12.

Aw(s, a) = Qw(s, a)− Vw(s) (2.12)
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Hence, the vanilla policy gradient term is modified to:

∇θJ(θ, w) = E[∇lnπθ(a|s)Aw(s, a)] (2.13)

Furthermore, due to the linear properties of both the gradient operator and the

expected value operator, the policy gradient operator can be transferred to be outside

of the expected value operator, as shown in Equation 2.14.

∇θJ(θ, w) = ∇E[lnπθ(a|s)Aw(s, a)] (2.14)

Lastly, integration of both sides gives a new term for the objective function J(θ, w)

as shown in Equation 2.15. The byproduct of integration function, dependent only

on w, was omitted since the objective function captured all the information necessary

to maximize itself in terms of both θ and w.

J(θ, w) = E[lnπθ(a|s)Aw(s, a)] (2.15)

In terms of application, the critic network in the policy gradient algorithm family

will only receive a state s as an input and not a state action pair (s, a), hence it cannot

directly calculate Qw(s, a) and it can only calculate Vw(s), and thus direct calculation

of the advantage term cannot be executed. In order to bypass this limitation, the

advantage is estimated based on the state values Vw(s). John Schulman et al., creator

of the PPO algorithm, presents a paper [19] on Generalized Advantage Estimation

(GAE) which discusses the method for estimating the advantage term. The objective

function can again be newly defined as an estimator:

Ĵ(θ, w) = Ê[lnπθ(a|s)Âw(s)] (2.16)
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2.6.4 From Policy Gradient to PPO Algorithm

The base objective function presented in Equation 2.9 can also be manipulated

such that it is a function of any arbitrary policy β(a|s), synonymously named a

behavior policy:

Ĵ(θ, w) =
∑
a

β(a|s)πθ(a|s)
β(a|s)

Âw(s) = Ê[
πθ(a|s)
β(a|s)

Âw(s)] (2.17)

In 2015, John Schulman et al. released a paper [20] on the Trust Region Policy

Optimization (TRPO) algorithm, which instead of utilizing the derived policy gra-

dient objective function shown in Equation 2.16, proposed a “surrogate” objective

function based on the derivation in Equation 2.17. The behavior policy β(a|s) in the

TRPO algorithm is defined as the previously updated policy πθold(a|s):

Ĵ(θ, w) = Ê[
πθ(a|s)
πθold(a|s)

Âw(s)] = Ê[rθ(a|s)Âw(s)] (2.18)

rθ(a|s) =
πθ(a|s)
πθold(a|s)

(2.19)

As described in the paper, the surrogate objective was constrained outside of the

objective itself, hence the term “trust region”. This was done in order to eliminate

the possibility of excessively large policy updates which could cause the algorithm to

diverge or collapse. The algorithm proved to be more stable, efficient and quicker

with respect to the regular policy gradient algorithms.

In 2017, John Schulman et al. released a paper [5] on the PPO algorithm which,

although providing minor changes to the TRPO algorithm, proved to be simpler,

faster and more sample efficient. Rather than constraining the objective function like

in TRPO, the constraint was moved inside the objective function in the form of a
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clipped surrogate objective:

Ĵ(θ, w) = Ê[min(rθ(a|s)Âw(s), clip(rθ(a|s), 1− ϵ, 1 + ϵ)Âw(s))] (2.20)

Figure 2.7 shows a visual depiction of the clipping function in the estimated ob-

jective term.

Figure 2.7. Visual Depiction of Objective Function Clipping [5]

The paper [5] on the PPO algorithm shows better performance and results than

many other policy gradient algorithms such as A2C, Vanilla Policy Gradient and

TRPO.

2.6.5 Reward Shaping

The environment of a DRL model consists of defining all possible states and all

possible actions that can be taken from those states. In the continuous realm, the

states and actions are defined in terms of bounds rather than specific states and

actions which would correspond to the discrete case. For this thesis, the states and

actions are defined by the dynamic equations of motion presented above. Other than

the dynamics of the agent (or helicopter), a reward structure must be defined in the

27



environment in order to provide some form of feedback to the agent during training.

A reward structure consists of two elements:

� Intermediate Rewards - These are rewards given to the agent between the initial

state and the terminal state. Their main objectives are to guide the agent to the

main goal sooner during the training process, and to encourage or discourage

certain behaviors and/or certain states.

� Terminal Rewards - These are rewards given to the agent at a terminal state (if

one exists at all). A terminal state can be directly related to the main objective,

or can be defined as a state which has negative implications and still ends an

episode. For instance, in the game of chess an objective terminal state could be

attaining a check-mate against the opponent. Likewise, a undesirable terminal

state could be losing to the opponent through check-mate.

Shaping the rewards holds many difficulties, such as properly defining the order

of magnitudes of the various rewards, keeping the ratios between various rewards

consistent with the objective, and properly defining the reward functions so that the

agents rate of improvement is desirable. Furthermore, although distribution of inter-

mediate rewards can reduce sparsity and drive the agent quicker to its objective, it

can potentially create sub-optimal solutions by forcing the solution to a less desirable

local minimum. According to engineers from Air Force Research Laboratory (AFRL)

working in the field, it is desirable to not include intermediate rewards at all, and

only add them if truly necessary.

For the sake of this research, it was recommended by AFRL engineers to im-

mediately terminate an episode and give a negative reward if any pre-defined state

limit was exceeded. This strategy was recommended in order to reduce running times

whilst still encouraging the agent to reach the desired terminal state, and to also
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reduce possibility of the agent reaching states which could cause a divergence of the

dynamic model of the environment.

2.6.6 Ray RLlib

Ray RLlib is an open-source library for RL, offering support for production-level,

highly distributed RL workloads while maintaining unified and simple Application

Program Interfaces (API’s) for a large variety of industry applications. It provides

an organized structure for training and testing DRL networks, and offers various

methods for algorithm hyper-parameter tuning such as classic grid-search, Bayesian

Optimization and Distributed Hyper-Parameter Optimization. Ray RLlib was used

with Python to create, train and test the PPO DRL network in this thesis.

2.7 Similar Work

2.7.1 Previous Work in Optimal Control

In 2018, Harris [2] applied optimal control using GPOPS-II to analytically derive

an HV diagram and to also generate optimal flight trajectories for an AH-1Z helicopter

in an One Engine Inoperable (OEI) or total power loss scenario. Harris developed

a point-mass dynamic model that compared favorably to AH-1Z flight test data for

low-speed flight. The point mass model was based on the models used by Johnson

[21] and Lee [22] in their research regarding helicopter flight control using functional

optimization. Furthermore, in 2020 Brown [23] continued the work performed by

Harris which consisted of investigating different factors of the helicopter model and

their impacts on the HV diagram, such as the sensitivity of the HV diagram solution

to different ground effect models.

Although both theses provided favorable and plausible results towards generating

HV diagrams, they were less practical for generating real-time solutions due to the fact
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that the GPOPS-II simulations were not capable of generating closed form control

law solutions, and running times were quite often on the order of minutes for one

initial height-velocity pair.

Due to the limitations stated above, this thesis will research the use of DRL as a

means to provide an optimal control law for a helicopter in a total power loss scenario,

such that given any state, an optimal set of values for the helicopters controls can be

generated instantly in a real-time setting.

2.7.2 Previous Work in Deep Reinforcement Learning

A similar thesis [24] was conducted at the Middle East Technical University in-

volving training a DRL network to generate optimal policies for landing an OH-58A

helicopter in a total power loss scenario. The helicopter was modeled as a point-mass

and was restricted to motion in the vertical plane only. The model comprised of 6

state variables and the dynamic equations of motion and were based on Lee’s [22]

simplified helicopter model. Furthermore, the Asynchronous Advantage Actor Critic

(A3C) policy gradient algorithm was used to update the actor and critic network

weights. In addition, the author used ReLu activation functions for actor and critic

hidden layers. The thesis mentions that the actor and critic networks consisted of

2 hidden layers, each with 32 neurons. The thesis showed reasonable and affirma-

tive results, where the DRL network managed to bring the helicopter to landings at

acceptable velocities even inside the “avoid” area of the official HV diagram. Also,

the test and training performances seemed only to improve with number of episodes,

where no signs of collapsing rewards or a collapsing policy were exhibited.
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2.8 Summary

This chapter provided background in topics related to previous work such as func-

tional optimization and control, as-well as the advantages and disadvantages that

arose from the previous work which led to research conducted in this thesis case

study. Furthermore, the chapter provided the necessary material for understanding

DRL methods and their advantages in terms of replacing analytically derived control

laws with trainable neural networks.
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III. Research Methodology

3.1 Chapter Overview

This chapter describes the development of a helicopter dynamic model and the

Deep Reinforcement Learning (DRL) problem formulation including the reward ar-

chitectures used for this research. The chapter begins by developing a helicopter

model based on previous research. The helicopter model is then incorporated into

the environment of the DRL problem. Also part of the environment, the reward

structure is defined in order to provide feedback to the agent. The hyper-parameter

tuning methods are discussed and also general training methodologies, which provide

further useful information, are presented below.

3.2 Basic Assumptions

A point-mass model has been selected for this research since point-mass models

have been shown by several studies, including those by Johnson [21] and Lee [22], to

adequately represent a helicopter during flight. Furthermore, in terms of generating

an Height-Velocity (HV) diagram, the low height high speed portion will not be an-

alyzed since it is related to tail strike and requires the modeled helicopter’s exterior

dimensions to be defined. Since a helicopter ideally experiences minimal lateral move-

ment when performing an autorotation, the model confines helicopter motion within

a vertical plane. In contrast to Harris’s research [2], the rotor inflow was modeled

using an empirical vortex ring state model. The helicopter mass is assumed to be con-

stant throughout the autorotation, since any changes in mass due to factors such as

fuel burn are negligible. The helicopter model reflects standard sea-level atmospheric

conditions with no wind and constant air density.
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3.3 8-State Dynamic Model

3.3.1 Helicopter Model

The helicopter dynamic models used by Lee [22] and Harris [2] formed the starting

point for the development of the models used in this research. The force diagram

shown in Figure 3.1 depicts a point-mass helicopter in descent and provides the basis

for the dynamic model’s equations of motion. Balancing the vertical and horizontal

forces acting on the point-mass produces Equations 3.1 and 3.2, respectively.

Figure 3.1. Point-Mass Helicopter Force Diagram

u̇ =
1

m
T sinαTPP − 1

m
D cos θFP (3.1)

ẇ = g − 1

m
T cosαTPP − 1

m
D sin θFP (3.2)

Figure 3.1 also presents many of the state and control variables for the dynamic model.

The two controls (X1 and X2) are the rate of change of main rotor collective pitch
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angle, θ̇COLL and the rate of change of angle of attack of the rotor disk plane, α̇TPP

described in Equations 3.3 and 3.4. The thrust vector T is a function of θCOLL. The

integrals of the two control variables are defined as states, allowing to fully describe

the state-space equations. Two of the states describe the position of the helicopter:

h is the height of the helicopter above the ground, and d is the horizontal distance

the helicopter travels starting at engine failure. The next two states are the vertical

and horizontal velocities of the helicopter, w and u, respectively. By definition, the

derivatives of the positions are the velocities as shown in Equations 3.5 and 3.6. It is

important to note that a negative sign is included in Equation 3.6, since the height

is defined as positive in the upward direction, and the vertical velocity is defined as

positive in the downward direction.

X1 = θ̇COLL (3.3)

X2 = α̇TPP (3.4)

ḋ = u (3.5)

ḣ = −w (3.6)

Equations 3.7-3.9 show the derivation for the energy equation, which relates the

potential, kinetic and main rotor rotational energies to the excess power available.

The equations introduce the rotor rotational speed, Ω, as another state variable.

Also, the excess power is defined as the difference between the current engine power

available PE and the required power Preq.

d

dt
[
1

2
M(u2 + w2) +Mgh+

1

2
IRΩ

2] = PE − Preq (3.7)

Muu̇+Mwẇ −Mgw + IRΩΩ̇ = PE − Preq (3.8)

Ω̇ =
1

IRΩ
(PE − Preq −Muu̇−Mwẇ +Mgw) (3.9)
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Furthermore, an independent state equation defining the engine power decay after

total power loss is defined with a time constant τE:

τEṖE = −PE (3.10)

In summary, the 8 state-space equations are described below:

ḋ = u (3.5)

ḣ = −w (3.6)

u̇ =
1

m
T sinαTPP − 1

m
D cos θFP (3.1)

ẇ = g − 1

m
T cosαTPP − 1

m
D sin θFP (3.2)

Ω̇ =
1

IRΩ
(PE − Preq −Muu̇−Mwẇ +Mgw) (3.9)

ṖE = −PE

τE
(3.11)

θ̇COLL = X1 (3.3)

α̇TPP = X2 (3.4)

where;

cos θFP =
u√

u2 + w2

sin θFP =
w√

u2 + w2

The auxiliary equations describing variables such as the thrust T , drag D and

power required Preq are presented in the next sections. All auxiliary equations are

provided in dimensionless form. Moreover, the state-space equations along with the

states themselves are normalized such that they are dimensionless, in order to provide

solutions in all relative scales. Furthermore, the time variable is also normalized such
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that it is dimensionless:

ψ = tΩ0 (3.12)

d

dψ
=

1

Ω0

d

dt
= ()′ (3.13)

d̄(ψ) =
1

R
d(Ω0t) (3.14)

h̄(ψ) =
1

R
h(Ω0t) (3.15)

ū(ψ) =
1

Ω0R
u(Ω0t) (3.16)

w̄(ψ) =
1

Ω0R
w(Ω0t) (3.17)

Ω̄(ψ) =
1

Ω0

Ω(Ω0t) (3.18)

P̄E(ψ) =
1

Pmax

PE(Ω0t) (3.19)

ᾱTPP (ψ) = αTPP (Ω0t) (3.20)

θ̄COLL(ψ) = θCOLL(Ω0t) (3.21)

3.3.2 Required Power

In theory, the total power required by the helicopter can be calculated as a com-

bination of main rotor power, tail rotor power, and accessory power losses. After

including the gearbox efficiencies, this summation becomes:

PR =
1

ηC

(
PMR

ηMR

+
PTR

ηTR

+ PAcc

)
(3.22)

For the research conducted in this thesis, it was assumed that the tail rotor power

and accessory power were negligible and hence were not calculated nor added to the

total power calculation. The power requirements for the main rotor are calculated

using the methods discussed in Section 6.4 in Johnson’s Rotorcraft Aeromechanics [8].

Johnson explains that the required rotor power for a helicopter in forward flight can
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be estimated by aggregating the rotor induced power, profile power, parasite power,

and climb power. Equation 3.24 shows this relationship in terms of power coefficients.

PMR = ρA(ΩR)3CPMR
(3.23)

CPMR
= CPi

+ CPo + CPP
+ CPC

(3.24)

The rotor induced power is the power that is associated with the production of

thrust. The calculation for the induced power coefficient, CPi
, includes two empirical

correction factors; κ is the induced power correction factor which accounts for any

general losses such as those from tip loss, nonuniform inflow, wake swirl and the fact

that the helicopter has a finite number of blades, and B which is Prandtl’s tip-loss

factor. λi is the induced velocity ratio and λz is the rate of descent velocity ratio

CPi
= CT (κ

λi
B

+ λz) (3.25)

where;

λi =
vi
Vtip

λz =
vz
Vtip

The term for the coefficient of thrust CT is given below. σ is the solidity ratio of

the main rotor, which is the ratio between the total rotor blade area and the rotor disk

area. Furthermore, µ is the advance ratio which represents the helicopter’s airspeed

in non-dimensional form. θtw is the twist angle of the rotor blades, cdo is the average
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blade drag coefficient and a0 is the rotor blade lift curve slope.

CT =
σa0
2

[(
1

3
+

1

2
µ2)θCOLL − 1

8
µ2θtw − 1

2
(
λi
B

+ λz)(1 +
cd0
a0

)] (3.26)

µ =
1

Ω̄0(ψ)
[ū(ψ)cosαTPP + w̄(ψ)sinαTPP ] (3.27)

The profile power is the power necessary for the rotor blades to rotate through

the air. The following approximation of the profile power coefficient is accurate for

low advance ratios, such as those that are encountered during this research.

CPo =
σcdo
8

(Ω̄2(ψ) + 4.65µ2) (3.28)

Whereas the profile power accounts for blade drag, rotor parasite power encom-

passes the drag from the helicopter chassis. The drag that the helicopter experiences

is estimated using an equivalent normalized longitudinal axis flat plate area, f̄x, when

calculating the profile power coefficient, CPp .

CPp = |1
2
f̄xū

3(ψ)| (3.29)

Where;

f̄x =
fx
A

f̄z =
fz
A

The climb power is the power necessary for the helicopter to change its altitude.

The climb power coefficient, CPc , is derived from the helicopter’s rate of descent
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(ROD), w, and the aircraft weight coefficient, CW .

CPc = −CW w̄(ψ) + |1
2
f̄zw̄

3(ψ)| (3.30)

3.3.3 Rotor Inflow

Due to the descending flight path of helicopters during autorotation, the rotor

will likely operate in Vortex Ring State (VRS). Johnson describes [25] the equations

which utilize an empirical extension of the baseline momentum theory to determine

rotor inflow during flight that encounters VRS, although the equations are also valid

for flight out of VRS. The baseline momentum theory can be found in Johnson’s book

of Rotorcraft Aeromechanics [8].

3.3.4 Ground Effect

Whenever a helicopter is in close proximity to the ground, the induced velocity

at the rotor decreases. This phenomenon, known as ground effect, causes a reduction

in the amount of power required to produce a given thrust. Likewise, ground effect

causes an increase in the amount of thrust produced by a rotor at a given power.

Ground effect can be modeled by including a ground effect factor, kg, which scales

the thrust (or coefficient of thrust). 3.1 and 3.2 are then modified to be:

u̇ =
1

m
kgT sinαTPP − 1

m
D cos θFP (3.31)

ẇ = g − 1

m
kgT cosαTPP − 1

m
D sin θFP (3.32)

Some ground effect models are dependent only the height above ground level

(AGL) of the helicopter (such as Cheeseman, Bennett and Hayden’s models), and

there exist some models which incorporate blade element theory variables (such as

Law and Zbrozek’s models). The ground effect model used for this thesis is Hayden’s
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(taken from section 4.8 of Johnson’s book Rotorcraft Aeromechanics [8]), which is a

function of height AGL only:

kg(h̄) =

[
0.9926 +

0.03794

(1
2
h̄)2

]2/3
(3.33)

This thesis’ objective was to research and analyze the use of DRL in order define

optimal control laws for emergency landing scenarios in helicopters, with less impor-

tance on deriving a substantially accurate flight model with respect to the real world.

Thus, Hayden’s model was selected due to its simplicity.

3.3.5 Dimensionless Equations of Motion

The 8 dynamic equations described above were normalized such that they could

be described in dimensionless form, and could incorporate the auxiliary equations

defined above:

d̄′(ψ) = ū (3.34)

h̄′(ψ) = −w̄ (3.35)

ū′(ψ) =
1

M̄
[kgCT sinαTPP Ω̄

2 − 1

2
V̄ 2f̄x cos θFP ] (3.36)

w̄′(ψ) = ḡ − 1

M̄
[kgCT cosαTPP Ω̄

2 − 1

2
V̄ 2f̄z sin θFP ] (3.37)

Ω̄′(ψ) =
1

Ω̄ĪR
[P̄maxP̄E −

CPreq

M̄
Ω̄3 + ḡw̄ − v̄′v̄ − w̄′w̄] (3.38)

P̄ ′
E(ψ) = − 1

τ̄E
P̄E (3.39)

θ̄′COLL(ψ) = X̄1 (3.40)

ᾱ′
TPP (ψ) = X̄2 (3.41)
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where;

M̄ =
M

ρAR

V̄ =
√
ū2 + w̄2

ḡ =
g

Ω2
0R

ĪR =
IR
MR2

P̄max =
Pmax

MΩ3
0R

2

X̄1 =
X1

Ω0

X̄2 =
X2

Ω0

3.3.6 Scaling of Dimensionless States

The eight state variables selected for this model are listed in Equations 3.44-3.51.

Each of these states have been scaled with respect to the normalized states 3.14-3.21

such that they’re all on the order of O(1), which is accepted practice when solving

with Non-Linear Programming (NLP) algorithms and specifically with a Deep Neural

Network (DNN). The scaling follows similar scaling techniques used by Lee [22] and

Johnson [21].

τs =
ψ

100
(3.42)

d

dτs
= 100

d

dψ
(3.43)

x1(τs) =
1

10
d̄(

ψ

100
) (3.44)

x2(τs) =
1

10
h̄(

ψ

100
) (3.45)

x3(τs) = 100ū(
ψ

100
) (3.46)

x4(τs) = 100w̄(
ψ

100
) (3.47)
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x5(τs) = Ω̄(
ψ

100
) (3.48)

x6(τs) = P̄E(
ψ

100
) (3.49)

x7 = X̄1(
ψ

100
) (3.50)

x8 = X̄2(
ψ

100
) (3.51)

Due to the fact that scaling the normalized states required simple arithmetic com-

putations, the dynamic equations were solved in non-dimensional form (see Equations

3.34-3.41) and the states were scaled and un-scaled accordingly.

3.3.7 Controls

As presented above, the two control variablesX1 andX2 are proportionally related

to the; (1) rate of change of main rotor collective pitch angle and (2) the rate of change

of rotor disk Tip Path Plane (TPP) angle with respect to the horizontal plane.

3.3.8 Summary of State Space Equations

Below are the state-space equations written in their initial dimensional form, with-

out normalization and without scaling. These equations aren’t directly implemented

into the algorithms used for this research, but as shown above provide the basis for

the normalized and scaled equations used in the DRL algorithms:

ḋ = u (3.5)

ḣ = −w (3.6)

u̇ =
1

m
kgT sinαTPP − 1

m
D cos θFP (3.31)

ẇ = g − 1

m
kgT cosαTPP − 1

m
D sin θFP (3.32)

Ω̇ =
1

IRΩ
(PE − Preq −Muu̇−Mwẇ +Mgw) (3.9)
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ṖE = −PE

τE
(3.11)

θ̇COLL = X1 (3.3)

α̇TPP = X2 (3.4)

Below are the state-space equations written in non-dimensional form. Although

the equations are dimensionless, they’re not scaled and hence do not hold the same

order of magnitudes. These first order ordinary differential equations are calculated

in the algorithms of the helicopter dynamics, but are not used in the DRL algorithms

until the states are scaled.

d̄′(ψ) = ū (3.34)

h̄′(ψ) = −w̄ (3.35)

ū′(ψ) =
1

M̄
[kgCT sinαTPP Ω̄

2 − 1

2
V̄ 2f̄x cos θFP ] (3.36)

w̄′(ψ) = ḡ − 1

M̄
[kgCT cosαTPP Ω̄

2 − 1

2
V̄ 2f̄z sin θFP ] (3.37)

Ω̄′(ψ) =
1

Ω̄ĪR
[P̄maxP̄E −

CPreq

M̄
Ω̄3 + ḡw̄ − v̄′v̄ − w̄′w̄] (3.38)

P̄ ′
E(ψ) = − 1

τ̄E
P̄E (3.39)

θ̄′COLL(ψ) = X̄1 (3.40)

ᾱ′
TPP (ψ) = X̄2 (3.41)

Lastly, below are the 8 scaled states which are provided to the actor DNN and

critic DNN of the DRL algorithms. The scaling maintained an average order of O(1)

for all the states, thus allowing for more stable weight updates of the actor and critic

networks:

τs =
ψ

100
(3.42)
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d

dτs
= 100

d

dψ
(3.43)

x1(τs) =
1

10
d̄(

ψ

100
) (3.44)

x2(τs) =
1

10
h̄(

ψ

100
) (3.45)

x3(τs) = 100ū(
ψ

100
) (3.46)

x4(τs) = 100w̄(
ψ

100
) (3.47)

x5(τs) = Ω̄(
ψ

100
) (3.48)

x6(τs) = P̄E(
ψ

100
) (3.49)

x7(τs) = X̄1(
ψ

100
) (3.50)

x8(τs) = X̄2(
ψ

100
) (3.51)

3.3.9 State and Action Limits

Below are the helicopter’s structural and operational limits, and as well as limits

which were defined such that the dynamic equations of motion wouldn’t diverge,

producing unfeasible values. The state limits are initially presented in dimensional

form, followed by their presentation in scaled dimensionless form.

� d > 0 → x1 > 0 - This limit makes sure that the helicopter does not fly

backwards at any instance.

� h > 0 → x2 > 0 - Any simulated episode will end once the helicopter has

reached the ground. The helicopter is allowed to climb higher than its initial

height if necessary.

� 0 < u[knts] < 150 → 0 < x3 < 35.13 - A typical but arbitrary VNE never exceed

velocity of 150[knts] was defined. Surpassing this limit could potentially cause

structural damage to the helicopter as well as possible main rotor stall.
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� −800 < w[ft
s
] < 2000 → −1.85 < x4 < 4.63 - The rate of descent has no direct

affect on structural damage, but is known to be strongly correlated to main rotor

rotational velocity (RPM) which does hold operational and structural limits.

� 70 < Ω[%] < 115 → 0.7 < x5 < 1.15 - The main rotor RPM must be maintained

within these limits in order to limit possibility of main rotor stall or excessive

blade stress.

� 0 < PE[%] < 100 → 0 < x6 < 1 - There is no need to define limits for engine

power since it is designed and limited to its own performance capabilities and

is independent of all helicopter controls. However, limits were defined anyways

due to requirements of the Ray RLlib Proximal Policy Optimization (PPO)

algorithm.

� 1 < θCOLL[deg] < 22 → 0.017 < x7 < 0.383 - The main rotor collective angle

is mechanically limited. The limits in dimensionless form are converted from

degrees to radians.

� −30 < αTPP [deg] < 30 → −0.524 < x8 < 0.524 - The TPP angle is limited in

order to discourage nose-dives or excessive flares.

The action limits were defined arbitrarily such that it would take 3 seconds to

increase the main rotor collective pitch from the minimum setting to the maximum

setting, and it would take 6 seconds to increase the TPP angle from the minimum

setting to the maximum setting.

� −7 < θ̇COLL[
deg
sec

] < 7 → −0.122 < X1[rad] < 0.122

� −10 < α̇TPP [
deg
sec

] < 10 → −0.175 < X2[rad] < 0.175
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3.3.10 Helicopter Model Parameters

Table 3.1 presents the physical and dimensionless helicopter model parameters.

Table 3.1. Helicopter Model Physical Parameters and Coefficients

Parameter Name Symbol Value

Gravity Constant g 32.172[ft
s
]

Air Density ρ 0.002378[ slug
ft3

]

Gross Weight GW 16200[lbf ]

100% RPM Ω0 30[ rad
sec

]
Main Rotor Radius R 24[ft]

Solidity Ratio σ 0.1
Average Lift Curve Slope a0 5.73[ 1

rad
]

Average Blade Drag Coefficient cd0 0.008
Induced Velocity Correction Factor κ 1.08

Tip Loss Factor B 0.97
Blade Twist 0 → R θtw −10[deg]

Longitudinal Effective Drag Area fx 25[ft2]
Vertical Effective Drag Area fz 168[ft2]

Main Rotor Moment of Inertia IR 5440[slug ∗ ft2]
Max Engine Power Available Pmax 2500[hp]
Failed Engine Time Constant τ 0.5[s]

Rotor Hub Height hhub 12[ft]
Helicopter Mass m GW

g
= 503.5[slug]

Rotor Disk Area A πR2 = 576π[ft2]

Operational Rotor Tip Speed Vtip0 Ω0R = 720[ rad
s
]

Weight Coefficient CW
GW

ρAVtip0
2 = 7.26 ∗ 10−3

Normalized Gravity Constant ḡ g
Ω2

0R
= 1.49 ∗ 10−3

Normalized Mass Constant m̄ m
ρAR

= 4.875

Normalized Longitudinal Drag Area f̄x
fx
A

= 0.0138

Normalized Vertical Drag Area f̄z
fz
A
= 0.0928

Normalized Rotor Hub Height h̄hub
hhub

R
= 0.5

Normalized Rotor Inertia ĪR
IR

mR2 = 0.0188
Normalized Max Power P̄max

Pmax

mΩ3
0R

2 = 1.756 ∗ 10−4

Normalized Engine Time Constant τ̄ τΩ0 = 15
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3.4 Deep Reinforcement Learning Problem Formulation

The DRL problem for this research implements the above helicopter model to

estimate the optimal controls and optimal flight trajectories in a total power loss

scenario such that landing velocities are minimized. The non-dimensionalized and

scaled states above are input into the actor and critic neural networks of the PPO

DRL model, for which after the appropriate controls input to the helicopter are

generated through the policy functions defined by the parameters output from the

actor network.

3.4.1 Reward Architecture

The reward architecture consisted only of terminal rewards. An episode termi-

nated when the helicopter reached the ground (h = 0) although it could also terminate

prematurely if any of the state limits were exceeded. The terminal reward was defined

as follows:

if State Limit Exceeded then

rterminal = − x2

x2initial

Terminate Episode

else if Helicopter Reached Ground then

rterminal =
5

0.8+0.85x2
4+0.15x2

3

Terminate Episode

else

rterminal = 0

end if

The premature terminal reward utilized the height of termination in order to

encourage the agent to reach the ground as soon as possible. The height of termination

was normalized by the initial episode height such that the values were always on the
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order of O(1), and so that all penalties would be defined with respect to the initial

condition. Once the episodes terminated on ground impact, the terminal reward

turned from a negative value to a positive value, thus giving extra feedback to the

agent. Furthermore, the ground terminal reward increased even more if the ROD

and the velocity were minimized. The values of the terminal reward were defined

arbitrarily with the intention to keep the reward values on the order of O(1) and to

also give more weight to the ROD (x4) as opposed to the velocity (x3).

3.4.2 General Training Methodology

During hyper-parameter tuning or training, an episode was initiated by random

selection of one out of 400 possible initial height-velocity combinations. The initial

height was randomly selected out of 25 different values ranging between 24− 600[ft]

AGL, and the initial velocity was randomly selected out of 16 different values ranging

between 0 − 50[KTAS]. Another proposed method was to select an initial height-

velocity pair based on a probability distribution defined by the initial total energy,

with higher probability of selection favored towards higher initial energy states. This

method was proposed based on the assumption that higher initial energy states al-

ready encapsulate information from lower energy states, thus possibly saving training

times. This method was not implemented in the research discussed in this thesis,

although it may be implemented in future work. The episode time-step was set to

∆t = 0.1[s] both for the training and test environments. The default Ray RLlib PPO

configuration file was used as a baseline, where various hyper-parameters were tuned

and configured after. The algorithm was set to use 8 roll-out workers as that was the

maximum amount the computer could withstand without crashing when running the

algorithm.
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3.4.3 Algorithm Hyper-Parameter Selection

Trained DRL agents can provide drastically different results when different algo-

rithm hyper-parameters are used. An undesirable combination of hyper-parameters

used to train an agent can cause the total rewards to plateau at values much lower

than the true optimum. Moreover, the rewards can many times even “collapse”,

meaning the agent is being trained negatively such that its performance is only de-

teriorating. In order to overcome this issue, the Ray Tune Distributed Asynchronous

Hyper-Parameter Optimization (HyperOpt) algorithm was used to optimize various

hyper-parameters. HyperOpt is a modified version of the Bayesian Optimization

(BayesOpt) optimizer algorithm, and allows for optimization of parameters both in

the discrete and continuous range. Both HyperOpt and BayesOpt are black-box op-

timizers, meaning the change in hyper-parameters cannot be directly inferred from

the objective/cost.

The HyperOpt tuner was run for 2 experiments of 25 trials where each trial was

run for 100, 000 episodes. The first set of trials consisted of tuning hyper-parameters

on actor and critic networks smaller than the default Ray RLlib PPO network sizes.

The default PPO network was defined as having 2 hidden layers holding 256 nodes

each. The second set of trials consisted of tuning hyper-parameters on networks of

larger size as compared to the default network size. The reason for splitting the hyper-

parameter selection into two experiments was so that in addition to attaining optimal

hyper-parameters, the effects of different sized networks could be examined. Before

each trial, the HyperOpt algorithm picked a set of hyper-parameters based both on a

uniform distribution of the possible values allowed, and also based on the performance

information deduced from the previous trials. The tuner’s objective was to maximize

mean rewards over a number of episodes. The following hyper-parameters were tuned

for the first set of trials:
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� Learning Rate: lr ∈ U([10−6, 10−5])

� Discount Factor: γ ∈ U([0.9, 0.99])

� GAE Lambda: λ ∈ U([0.9, 0.99])

� Train Batch Size: BatchSize ∈ U([2048, 8192])

� Actor and Critic Hidden Layer Structure ∈ U([[32, 32], [64, 64], [128, 128], [256, 256]])

The following hyper-parameters were tuned for the second set of trials:

� Learning Rate: lr ∈ U([10−6, 10−5])

� Discount Factor: γ ∈ U([0.9, 0.99])

� GAE Lambda: λ ∈ U([0.9, 0.99])

� Train Batch Size: BatchSize ∈ U([2048, 8192])

� Actor and Critic Hidden Layer Structure: NNsize ∈ Udiscrete([[256, 256], [512, 512], [1024, 1024]])

The Adam back propagation optimizer was chosen for updating the actor and

critic networks as it is recommended to use with the PPO algorithm and is the Ray

RLlib default optimizer. Furthermore, since the actor and critic networks were set

to hold only 2 hidden layers, the expected difference in computational time between

using ReLu activations and tanh was considered negligible and hence the Ray RLlib

default tanh activation was used. Future work may include hyper-parameter tun-

ing for various activation functions. In addition, 8 rollout workers were used for

parallelized training. Furthermore all other hyper-parameters necessary for training

were taken from Ray RLlib’s default algorithm configuration dictionary for PPO - a

number of the default settings are presented below.

� PPO Clip Parameter: ϵ = 0.3
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� PPO KL Coefficient: KL = 0.2

� PPO KL Target Coefficient: KLtgt = 0.01

� Hidden Layers Activation: tanh

� Stochastic Gradient Descent (SGD) Iterations: 30

� SGD Minibatch Size: 128

� Back-Prop Optimizer: Adam

� Rollout Fragment Length: Auto (equals TrainBatchSize
Nworkers

)

� Exploration Type: Stochastic Sampling

� Framework: TensorFlow 2

3.5 Methodology Summary

This chapter describes the research methodology used for this thesis. It outlines

the equations of motion for the dynamic model as well as the DRL problem formu-

lation. The solution of the DRL problem incorporates the weights and biases of a

trained actor network, which acts as a controller and represents a control law, and

can instantaneously provide an optimal control solution given any helicopter state.

The results using this methodology are presented in the next chapter.
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IV. Results

4.1 Chapter Overview

This chapter discusses the results obtained in the hyper-parameter optimization

phase, the training phase and the different test phases. In the hyper-parameter

selection phase, the optimizing tuning algorithm ran two sets of 25 trials, where

in each trial the tuner attempted to improve the mean reward obtained based on the

performance of previous trials. In the training phase, the agent was trained using

the best set of hyper-parameters from both trials of the previous phase. Lastly, the

performance of the trained agent was tested, where examination of results included

both analysis of the flight trajectories for specific initial flight conditions and also

included analysis of a generated Height-Velocity (HV) diagram.

4.2 PPO Algorithm Hyper-Parameter Tuning

Two experiments consisting of 25 trials each were conducted in the hyper-parameter

selection phase using the Distributed Asynchronous Hyper-Parameter Optimization

(HyperOpt) black box optimizer. As explained in the previous chapter, the first ex-

periment consisted of trials with neural networks smaller in size with respect to the

default Ray RLlib Proximal Policy Optimization (PPO) actor and critic network size

(holding 2 hidden layers with 256 nodes in each layer), and the second experiment

consisted of trials with neural networks of larger size (holding 2 hidden layers with

up to 1024 nodes in each layer). Figures 4.1 and 4.2 show the top 10 trials for each

experiment and are labeled in order with respect to mean rewards accumulated, from

most to least.
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Figure 4.1. Ray Tune HyperOpt Results: Experiment 1

Figure 4.2. Ray Tune HyperOpt Results: Experiment 2

Figure 4.1 shows that the optimization in the first experiment generated mostly

higher mean rewards for networks having closer to 256 nodes in each hidden layer,

whereas majority of networks holding only 32 nodes in each hidden layer generated

lower mean rewards. Moreover, all trials holding only 32 nodes in each hidden layer

generated similar results, where the rewards plateaued after approximately 20,000

episodes of training. Lastly, the top 2 trials yielded similar reward values for the first

70,000 episodes, exhibiting a higher initial rate of increase of rewards with respect

to the latter combinations and also plateauing after approximately 20,000 episodes.

On the other hand, the rewards of the best trial increased again from 70,000 episodes

whereas the second best trial exhibited instability of increasing and decreasing the
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rewards. Overall, the best trial in experiment 1 generated a max reward of approxi-

mately 1.25 after 100,000 episodes.

Although the second experiment ran trials with networks of size [256,256] to

[1024,1024], Figure 4.2 shows that 9 out of the 10 best trials were with 1024 nodes

in each hidden layer, which was also the maximum hidden layer size defined for the

experiment. Contrary to experiment 1, experiment 2 exhibited generally similar be-

havior between all trials, showing a steep increase in rewards for the first 10,000

episodes and then a more mild increase for the rest of the training episodes. Compar-

ing to the best trial from experiment 1, the trials in experiment 2 show a monotonic

increase in the rewards from a “zoomed out” perspective, although they also display

signs of instability and noise from a “zoomed-in” perspective. In addition, none of

the trials in experiment 2 plateaued to a max reward value. Lastly, the best trial in

experiment 2 generated a max reward of approximately 2 after 100,000 episodes.

In summary, Figures 4.1 and 4.2 show in general that optimizing the hyper-

parameters for larger hidden layers gave in return larger mean rewards, but also

exhibited more training noise and instabilities. This could possibly be compared and

related to regular supervised learning where smaller neural networks provide higher

bias but lower variance (thus exhibiting lower training performance but higher stabil-

ity in the process), and larger neural networks yield a lower bias but higher variance

and could possibly be over-trained if not careful.

In conclusion, based solely on the mean rewards accumulated, the neural networks

of size [1024,1024] showed more favorable results. Furthermore, the best trial in

experiment 1 which had a network size of [256,256] showed a smoother and more

stable curve, and did not plateau. Hence, the best trials from both experiments were

selected to be trained on a large number of episodes.
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4.3 Training Results After Hyper-Parameter Selection

The following set of hyper-parameters were selected for long-term training based

on the results presented above:

Table 4.1. Hyper-Parameters Selected After Tuning Phase

Parameter Name Actor 1 Actor 2
Learning Rate (lr) 7.85 ∗ 10−6 6.46 ∗ 10−6

Discount Factor (γ) 0.9447 0.9541
GAE Lambda (λ) 0.9556 0.9782

Batch Size 5885 8165
Actor/Critic Hidden Layers Sizes [256, 256] [1024, 1024]

As mentioned previously, all other hyper-parameters relevant to the Ray RLlib

PPO algorithm were kept at the default values defined in Ray. Below are the training

results for each set of hyper-parameters.

4.3.1 Training Results: Actor 1

Figure 4.3 shows the PPO training results for the hyper-parameters of actor 1.

The training session was run for approximately 1,100,000 episodes, which equated to

approximately 19000 training batch updates. On average, a training batch contained

approximately 61 full episodes.
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Figure 4.3. PPO Training Results for Actor 1

The max rewards represented the highest reward obtained in an episode within

one training batch, the mean rewards represented the average reward of all episodes

within one training batch and the minimum reward represented the minimum reward

obtained in an episode within one training batch. Figure 4.3 shows a monotonic

improvement of the mean rewards until approximately 700,000 episodes, for which

after an “un-learning” phenomenon occurred. One of the main purposes of tuning

hyper-parameters, aside from increasing training performance, was to eliminate the

possibility of the un-learning phenomenon which in many cases PPO suffers from due

to the nature of the surrogate objective. The hyper-parameters were selected based

on performance obtained during the first 100,000 episodes only, and hence the late

un-learning effects could not be predicted.

Due to this occurrence, a hypothesis was proposed which claimed that in the

case of the helicopter environment, the optimal points of the objective function could

possibly be surrounded by many “cliffs”, the paths to the optimal points are very

narrow, and the trust region generated by the PPO clipping factor is not sufficient

for such circumstances. The hypothesis claimed that decreasing the learning rate at

the peak reward value could reduce the chance of gradient stepping towards a cliff,
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thus allowing the reward to increase even more rather than to decrease.

Figure 4.4 below shows a comparison between the training results before reducing

the learning rate, and after reducing the learning rate to an arbitrary value of lr =

4 ∗ 10−6. Figure 4.4 shows that arbitrarily decreasing the learning rate allowed the

mean reward to increase even more over a span of about 150,000 episodes, rather

than to decrease, and thus the hypothesis was proven true.

Figure 4.4. Left: Original Training Results. Right: Reduced Learning Rate Training
Results

Following the conclusion drawn above, an arbitrary annealing of the learning rate

was defined for the same combination of hyper-parameters. The initial learning rate

was set at a higher value of 5 ∗ 10−5 with respect to the original learning rate in

order to account for the fact that the learning rate anneals to order of magnitudes

significantly lower over time. The learning rate was arbitrarily decreased by 1% for

every 10 training batches (approx. 610 episodes). Figure 4.5 shows the learning rate

annealing schedule.
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Figure 4.5. Learning Rate Annealing Schedule for Actor 1

Figure 4.6 shows the training results for the PPO agent with the newly defined

annealing learning rate.

Figure 4.6. PPO Training Results for Actor 1 with Learning Rate Annealing

Figure 4.6 shows a non-monotonic but overall increase of both the mean and max

rewards until their max values, where they remain at those values without decreasing

for the duration of the training process. Training time was approximately 12 hours for

approximately 250,000 episodes (equivalently 6000 training batches), on a computer
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utilizing all 20 CPU’s with 8 rollout workers - which equated to an average training

rate of 20, 833[ episodes
hr

].

4.3.2 Training Results: Actor 2

Actor 2 exhibited similar behavior compared to actor 1 without learning rate

annealing, where initially the mean rewards increased in the training process and

then decreased.

As executed previously, the learning rate was also annealed in order to overcome

the un-learning phenomenon. The learning rate was arbitrarily decreased by 1% for

every 10 training batches (approx. 610 episodes), and the initial learning rate was

also slightly increased. Figure 4.7 below shows the learning rate annealing schedule

for actor 2.

Figure 4.7. Learning Rate Annealing Schedule for Actor 2

Figure 4.8 below shows the training results for actor 2 after annealing the learning

rate over the training episodes. Figure 4.8 shows similar mean and max rewards when

compared to Figure 4.6, although instances of training instability are observable - such

as the large dip at approximately 180,000 episodes.
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Figure 4.8. PPO Training Results for Actor 2 with Learning Rate Annealing

Training time was approximately 44 hours for approximately 490,000 episodes

(equivalently 8000 training batches), on a computer utilizing all 20 CPU’s with 8

rollout workers - which equated to an average of training 11, 136[ episodes
hr

]. Actor 2

trained at a rate approximately 2 times slower than actor 1, which was was expected

due to the larger actor and critic network size.

4.4 Testing of Trained Agents

The trained PPO agents for both actor 1 and actor 2, with added learning rate

annealing, were tested in ideal conditions, meaning that no effects such as winds,

gusts or any other disturbances were added to the testing environment. Furthermore,

no action/control input delays were added to the testing environment. The non-ideal

effects mentioned above may be researched and tested in future work.

4.4.1 Test Results: Actor 1

Figure 4.9 shows an HV diagram defined by discrete data points. The diagram

depicts 400 terminal data points with initial heights between 0-600[ft] above ground
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level (AGL) and initial velocities between 0-50[KTAS]. Each terminal data point can

hold 3 different categories; non-lethal landing (green), lethal landing (red) and early

termination of the episode due to exceeding of state limit (blue). As mentioned

previously, a non-lethal landing is defined as a landing where the rate of descent

(ROD) on touchdown is smaller than 5[ft
s
] and the ground-speed of the helicopter

on touchdown in smaller than 10[knots], which equates 10[KTAS] without winds.

Figure 4.9 shows that the majority of simulated trajectories terminated with a non-

lethal landing. Moreover, contrary to the generated results it was expected that initial

conditions in the lower to upper hover region would terminate with lethal landings,

as depicted for instance in the HV diagram for the single engine AH-1F [26]. Lastly,

initial conditions of high energy, that is the sum of kinetic and potential energy, also

terminated with either lethal landings or early termination due to exceeding of a state

limit.

Figure 4.9. HV Diagram for Actor 1

In order to analyze the episodes that terminated early or the lethal landings which

occurred when simulating high initial energies, the total energies were plotted at the
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beginnings and ends of every episode. The energy was defined as the sum of the

kinetic and potential energy heights as shown in Equation 4.1:

Ē = Ēk + Ēp = h+
1

2g
(u2 + w2) (4.1)

Figure 4.10 shows the initial energies and terminal energies of the helicopter for

all initial conditions in the defined bounds.

Figure 4.10. Initial (left) and Terminal (right) Energies vs Initial Conditions for Actor
1

Figure 4.10 shows small and randomly scattered areas of high terminal energies

which lay close to the hover region of the HV diagram. This observation coincides

with the initial conditions closer to the hover region that terminated early. From

further analysis it appeared that those specific initial conditions had high variance

in the results, where sometimes an episode would terminate early due to exceeding

a state limit, and sometimes an episode would terminate with a non-lethal landing.

In addition, when comparing Figures 4.9 and 4.10, lethal landing points and early

termination points in the high initial energy region all terminated with very low en-

ergies. From this observation it is possible that the agent needed some more training
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episodes. In addition, it may be necessary to favor higher initial energy conditions

than lower initial energy conditions, due to the fact that higher initial energy condi-

tions generate longer episodes and thus require more training, and solutions of lower

initial energies are anyways encapsulated in solutions of higher initial energies.

4.4.2 Test Results: Actor 2

Figure 4.11 shows the generated HV diagram for actor 2. Compared to the HV

diagram for actor 1 (Figure 4.9), there are significantly fewer non-lethal terminal

landings and more lethal landings. Furthermore, the high initial energy region ends

with lethal landings or early termination, similar to the HV diagram for actor 1.

Figure 4.11. HV Diagram for Actor 2

Figure 4.12 shows smoother results with respect to the terminal energy diagram

of actor 1, hinting that the test variance may be smaller. In addition, the majority

of initial conditions terminate with low energy with the exception of the high initial

energy states. When comparing between the results of actor 1 and actor 2, it may be

possible that although the results initially look less promising, the larger actor and

63



critic networks have more potential to give better results. The author’s hypothesis

is that the larger networks (such as the one of actor 2) have a higher potential of

generating desirable results due to higher network capacity, but the selection of hyper-

parameters must be done carefully as the network is more sensitive to instabilities

in training. Furthermore, smaller sized networks are quicker to train and encounter

fewer instabilities during training, but can be limited by their capacity to cover all

initial conditions without high test variance.

Figure 4.12. Initial (left) and Terminal (right) Energies vs Initial Conditions for Actor
2

4.4.3 Summary of Test Results

In summary, actor 1 generated over-all better results than actor 2. Again, this

may not necessarily mean it is recommended to use a smaller network. The hyper-

parameter tuning phase consisted of only 100,000 episodes with respect to the full

training sessions which consisted of approximately 400,000 episodes. Ideally, the

hyper-parameter phase would need to also run for at-least 400,000 episodes in order

to truly distinguish between good and bad hyper-parameters. Furthermore, the an-

nealing schedule was added to both combinations arbitrarily and ideally would also

require tuning along with the other hyper-parameters. The author’s hypothesis is
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that by tuning all relevant hyper-parameters, and by increasing training times in the

tuning phase, larger actor/critic networks will outperform smaller networks.

4.4.4 Flight Trajectory Analysis of Trained Agent

This section will analyze in short the generated flight trajectories of actor network

1. Figures 4.13-4.19 show the simulation results for an initial height of H0 = 300[ft]

AGL and initial velocity of V0 = 30[KTAS], which is in the center of the HV diagram.

Figure 4.13. Actor 1: Distance vs Time - H0 = 300[ft], V0 = 30[KTAS]

Figure 4.14. Actor 1: Height vs Time - H0 = 300[ft], V0 = 30[KTAS]
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Figure 4.15. Actor 1: Velocity vs Time - H0 = 300[ft], V0 = 30[KTAS]

Figure 4.16. Actor 1: Rate of Descent vs Time - H0 = 300[ft], V0 = 30[KTAS]

Figure 4.17. Actor 1: Main Rotor RPM vs Time - H0 = 300[ft], V0 = 30[KTAS]
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Figure 4.18. Actor 1: Main Rotor Collective Pitch vs Time - H0 = 300[ft], V0 = 30[KTAS]

Figure 4.19. Actor 1: Tip Path Plane Angle vs Time - H0 = 300[ft], V0 = 30[KTAS]

Figures 4.14-4.16 show that both the velocity and rate of descent were minimized

close to 0. It is important to mention that although Figure 4.17 shows a surpassing

of the minimum rotational velocity (RPM) limit, this was in-fact allowed for heights

under 10[ft] in both the training and test phases since there is no real importance of

maintaining the RPM in the operational bounds when close to the ground in an emer-

gency scenario. Figure 4.18 shows that the main rotor collective pitch was maintained

at a low value for majority of the trajectory and gradually increased towards the land-

ing, which is the expected procedure when landing without power. Furthermore, the
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trade-off between the main rotor collective pitch and RPM is evident, as expected

in a real life procedure. Also, Figure 4.19 shows that the helicopter maintained a

Tip Path Plane (TPP) angle parallel to the horizon for majority of the trajectory

and gradually “decreased” into a flare towards the landing (note: positive TPP an-

gle was defined as nose down and vice versa). On the other hand, the TPP angle

was approximately 20[deg] nose up on landing which may be problematic for certain

helicopters in a real life scenario. As opposed to a point mass model, defining the

exterior dimensions of the modeled helicopter in future work will allow the agent to

take into account possibilities of tail-strike. Simulating such occurrences may reduce

the number of non-lethal landings generated by the PPO algorithm, and thus increase

the size of the no-fly zone in the HV diagram.

Figures 4.20 and 4.21 compare the results of an initial condition with high test

variance for actor 1, where one simulation terminated with a non-lethal landing and

the other terminated early due to exceeding a state limit. The simulated initial

condition was hover at a height of H0 = 600[ft] AGL:

Figure 4.20. Actor 1: Early Termination (Left) vs Non-Lethal Landing (Right) - H0 =
600[ft], V0 = 0
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Figure 4.21. Actor 1: Early Termination (Left) vs Non-Lethal Landing (Right) - H0 =
600[ft], V0 = 0

It is clear from Figures 4.20 and 4.21 that the most influential states varied greatly

between two different runs, where in the failed run the helicopter pitched down to the

max TPP angle and also surpassed the allowed ROD, and in the successful run the

TPP angle and the ROD were maintained within the allowed bounds although were

very close to surpassing their limits. It is possible that allowing a temporary devia-

tion from the mission limits may decrease the number of early terminated episodes,

especially those corresponding to initial conditions which exhibited high test variance.

See Appendix A for trajectory figures for a variety of initial conditions for both actor

1 and actor 2.

4.5 Chapter Summary

This chapter presented the results of the hyper-parameter tuning phase, the full

training phase and the test phase. The top combination of hyper-parameters was

selected for each tuning experiment for further training. One experiment consisted of

small hidden layers and the latter consisted of larger hidden layers. Arbitrary learning
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rate schedules were then added to both hyper-parameter combinations for improved

training performance. Finally, both actors (corresponding to both hyper-parameter

combinations) were tested and compared to each other. In summary, feasibility for

using the PPO algorithm to generate a control law for a helicopter in a total power loss

was proven, and with further improvement could yield a powerful tool for real-time

application.
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V. Conclusions and Recommendations

5.1 Conclusions

All of the research objectives listed in Chapter 1 were achieved. A mathematical

model for helicopter dynamics was developed and implemented into the Deep Rein-

forcement Learning (DRL) problem. Furthermore, the Proximal Policy Optimization

(PPO) algorithm was successfully implemented in training an actor neural network

to bring a helicopter to a safe landing in a total power loss scenario. Also, the PPO

algorithm was able to generate trajectories over a variety of initial conditions inside

the Height-Velocity (HV) diagram, using one actor network (as opposed to numer-

ous actor networks for different initial conditions). Overall, the PPO algorithm was

deemed a feasible candidate for generating a control law for a helicopter in a power

loss scenario, which may allow for future development of cockpit pilot aid products.

Below are the derived conclusions for various components of the research.

5.1.1 Comparison to Previous Work

As mentioned before, Kopsa [24] successfully implemented the Asynchronous Ad-

vantage Actor Critic (A3C) algorithm to generate optimal control trajectories for a

helicopter in a total power scenario. Kopsa investigated a significantly lighter heli-

copter, weighing about 5 times lighter than the helicopter defined in this thesis study,

which could be a reason for the difference in results. Also, Kopsa used a 6 state

dynamic helicopter model whereas an 8 state dynamic model was developed and used

for this thesis. Kopsa managed to train an actor network with a hidden layer size

of [32, 32] and with ReLu activation functions to successfully bring a helicopter to a

safe landing for majority of initial conditions, with tighter touchdown velocity limits.

On the other hand, the smallest optimal hidden layer size derived from Distributed
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Asynchronous Hyper-Parameter Optimization (HyperOpt) in this thesis study was

[256, 256] and using a hidden layer size of [32, 32] was inadequate with tanh activa-

tions. Also, Kopsa used the RMSprop optimizer for updating the actor/critic network

weights whereas the Adam optimizer was used in this thesis. Both theses have proven

the feasibility of using DRL algorithms for such objectives, although the difference

in environments, strategies and results may indicate that the DRL algorithms aren’t

globally effective - meaning that different helicopter models for instance may per-

form better with different DRL algorithms, re-tuned hyper-parameters and variable

training strategies.

5.1.2 Overall Training and Test Results

As mentioned in Chapter 4, actor 1 which has a hidden layer size of [256, 256]

produced better results than actor 2 which had a hidden layer size of [1024, 1024].

Actor 1 managed to bring the helicopter to a non-lethal landing over most initial con-

ditions, especially those in the region expected to be lethal as observed for instance

in the single engine AH-1F HV diagram [26]. As mentioned previously, it is expected

that modeling the exterior dimensions of the helicopter would’ve allowed for simu-

lation of tail-strike, thus possibly reducing the amount of non-lethal landings which

don’t correspond to the no-fly zones in HV diagrams such as that of the AH-1F. Also

aforementioned, actor 2 did not generate high test variance in certain areas of the

HV whereas actor 1 did. Hence, the data generated from the tuning, training and

test phases is not sufficient to conclude which hidden layer size is preferable. An opti-

mization tuning over a larger number of episodes, along with tuning hyper-parameters

which weren’t tuned in the thesis study (such as learning rate annealing parameters,

different activation functions, rollout length, batch size horizon, mini-batch size and

number of SGD iterations) may improve overall results and may allow for a definitive
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conclusion for the recommended actor/critic network size.

As observed from both actors, simulated trajectories from the high initial energy

regions terminated early probably due to lack of training. As mentioned before, a

workaround may be to select initial conditions for training based on a non-uniform

probability distribution, where the probability density is somewhat proportional to

the initial energy, where higher initial energies are favored with higher probabilities

of selection. This is expected to prioritize training on higher initial energy conditions,

which encapsulate a lot of information from lower initial energy conditions.

Overall, the PPO algorithm generated successful trajectories without any interme-

diate rewards, which are expected to be more optimal than solutions with intermediate

rewards since the total reward is related directly to the agent mission objective.

5.2 Recommendations for Future Work

The work accomplished during this research can be continued and improved upon

in a number of ways. Below are some areas for future work and improvement.

5.2.1 Improvements to the Hyper-Parameter Tuning

The hyper-parameters were only optimized over 100,000 episodes for each of the

50 trials that were run, which took in total about 7 days. Future work may consist of

using a dedicated machine learning computer with a strong GPU to tune the hyper-

parameters over more episodes, and to also train the agent quicker. Again, tuning

over a larger variety of hyper-parameters may also improve overall results.

5.2.2 Training Modifications and Experiments

As mentioned previously, a probability density function will be implemented for

the initial condition selection, with higher probabilities favoring higher initial energy
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conditions. Also, a simplistic helicopter model was used for the case study to prove

feasibility. For future work, experimentation with higher fidelity 3 dimensional and 6

degrees of freedom helicopter models may be necessary in order to actually develop

visual aid algorithms for real use. Such models will definitely have to take into account

the exterior dimensions of the helicopter, blade bending, torsion, lag and rotor disk

tilt in all degrees of freedom. Modeling the exterior dimensions of the helicopter may

allow for investigation of the high velocity low height no fly zone in the HV diagram,

as well as disqualify any solutions which would terminate with a tail-strike. Also,

such models will have to take into account actuator lag and disturbances, and sensor

errors and limitations.

In addition, an arbitrary reward structure was selected for this case study and

hence further investigation of other reward structures will be considered in future

work.

5.2.3 Further Test Scenarios

The agents trained in the case study were tested in fully deterministic and ideal

environmental conditions. Future work will test the trained agents robustness to

wind and gust effects, input lag, input bias and input noise, along with simulated

sensor errors and coping with irregular sensor observations. If the test results were

to show low robustness, the agent may need to be trained on such variable simulated

conditions too.

Lastly, only one nominal aircraft weight was considered in this investigation. Fu-

ture research will test the robustness of the algorithm on other various weights.
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Appendix A.

I Test Results for Actor 1

a Initial Conditions: H0=50[ft], V0=30[KTAS]

Figure A.1. Actor 1: Distance vs Time - H0 = 50[ft], V0 = 30[KTAS]

Figure A.2. Actor 1: Height vs Time - H0 = 50[ft], V0 = 30[KTAS]
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Figure A.3. Actor 1: Velocity vs Time - H0 = 50[ft], V0 = 30[KTAS]

Figure A.4. Actor 1: Rate of Descent vs Time - H0 = 50[ft], V0 = 30[KTAS]

Figure A.5. Actor 1: Main Rotor RPM vs Time - H0 = 50[ft], V0 = 30[KTAS]
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Figure A.6. Actor 1: Main Rotor Collective Pitch vs Time - H0 = 50[ft], V0 = 30[KTAS]

Figure A.7. Actor 1: Tip Path Plane Angle vs Time - H0 = 50[ft], V0 = 30[KTAS]

77



b Initial Conditions: H0=100[ft], V0=0[KTAS]

Figure A.8. Actor 1: Distance vs Time - H0 = 100[ft], V0 = 0[KTAS]

Figure A.9. Actor 1: Height vs Time - H0 = 100[ft], V0 = 0[KTAS]

78



Figure A.10. Actor 1: Velocity vs Time - H0 = 100[ft], V0 = 0[KTAS]

Figure A.11. Actor 1: Rate of Descent vs Time - H0 = 100[ft], V0 = 0[KTAS]

Figure A.12. Actor 1: Main Rotor RPM vs Time - H0 = 100[ft], V0 = 0[KTAS]
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Figure A.13. Actor 1: Main Rotor Collective Pitch vs Time - H0 = 100[ft], V0 = 0[KTAS]

Figure A.14. Actor 1: Tip Path Plane Angle vs Time - H0 = 100[ft], V0 = 0[KTAS]
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c Initial Conditions: H0=300[ft], V0=0[KTAS]

Figure A.15. Actor 1: Distance vs Time - H0 = 300[ft], V0 = 0[KTAS]

Figure A.16. Actor 1: Height vs Time - H0 = 300[ft], V0 = 0[KTAS]
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Figure A.17. Actor 1: Velocity vs Time - H0 = 300[ft], V0 = 0[KTAS]

Figure A.18. Actor 1: Rate of Descent vs Time - H0 = 300[ft], V0 = 0[KTAS]

Figure A.19. Actor 1: Main Rotor RPM vs Time - H0 = 300[ft], V0 = 0[KTAS]
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Figure A.20. Actor 1: Main Rotor Collective Pitch vs Time - H0 = 300[ft], V0 = 0[KTAS]

Figure A.21. Actor 1: Tip Path Plane Angle vs Time - H0 = 300[ft], V0 = 0[KTAS]
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d Initial Conditions: H0=300[ft], V0=50[KTAS]

Figure A.22. Actor 1: Distance vs Time - H0 = 300[ft], V0 = 50[KTAS]

Figure A.23. Actor 1: Height vs Time - H0 = 300[ft], V0 = 50[KTAS]
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Figure A.24. Actor 1: Velocity vs Time - H0 = 300[ft], V0 = 50[KTAS]

Figure A.25. Actor 1: Rate of Descent vs Time - H0 = 300[ft], V0 = 50[KTAS]

Figure A.26. Actor 1: Main Rotor RPM vs Time - H0 = 300[ft], V0 = 50[KTAS]
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Figure A.27. Actor 1: Main Rotor Collective Pitch vs Time - H0 = 300[ft], V0 = 50[KTAS]

Figure A.28. Actor 1: Tip Path Plane Angle vs Time - H0 = 300[ft], V0 = 50[KTAS]
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e Initial Conditions: H0=500[ft], V0=10[KTAS]

Figure A.29. Actor 1: Distance vs Time - H0 = 500[ft], V0 = 10[KTAS]

Figure A.30. Actor 1: Height vs Time - H0 = 500[ft], V0 = 10[KTAS]
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Figure A.31. Actor 1: Velocity vs Time - H0 = 500[ft], V0 = 10[KTAS]

Figure A.32. Actor 1: Rate of Descent vs Time - H0 = 500[ft], V0 = 10[KTAS]

Figure A.33. Actor 1: Main Rotor RPM vs Time - H0 = 500[ft], V0 = 10[KTAS]
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Figure A.34. Actor 1: Main Rotor Collective Pitch vs Time - H0 = 500[ft], V0 = 10[KTAS]

Figure A.35. Actor 1: Tip Path Plane Angle vs Time - H0 = 500[ft], V0 = 10[KTAS]
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f Initial Conditions: H0=500[ft], V0=40[KTAS]

Figure A.36. Actor 1: Distance vs Time - H0 = 500[ft], V0 = 40[KTAS]

Figure A.37. Actor 1: Height vs Time - H0 = 500[ft], V0 = 40[KTAS]
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Figure A.38. Actor 1: Velocity vs Time - H0 = 500[ft], V0 = 40[KTAS]

Figure A.39. Actor 1: Rate of Descent vs Time - H0 = 500[ft], V0 = 40[KTAS]

Figure A.40. Actor 1: Main Rotor RPM vs Time - H0 = 500[ft], V0 = 40[KTAS]
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Figure A.41. Actor 1: Main Rotor Collective Pitch vs Time - H0 = 500[ft], V0 = 40[KTAS]

Figure A.42. Actor 1: Tip Path Plane Angle vs Time - H0 = 500[ft], V0 = 40[KTAS]
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g Initial Conditions: H0=600[ft], V0=40[KTAS]

Figure A.43. Actor 1: Distance vs Time - H0 = 600[ft], V0 = 40[KTAS]

Figure A.44. Actor 1: Height vs Time - H0 = 600[ft], V0 = 40[KTAS]
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Figure A.45. Actor 1: Velocity vs Time - H0 = 600[ft], V0 = 40[KTAS]

Figure A.46. Actor 1: Rate of Descent vs Time - H0 = 600[ft], V0 = 40[KTAS]

Figure A.47. Actor 1: Main Rotor RPM vs Time - H0 = 600[ft], V0 = 40[KTAS]
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Figure A.48. Actor 1: Main Rotor Collective Pitch vs Time - H0 = 600[ft], V0 = 40[KTAS]

Figure A.49. Actor 1: Tip Path Plane Angle vs Time - H0 = 600[ft], V0 = 40[KTAS]
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h Initial Conditions: H0=600[ft], V0=50[KTAS]

Figure A.50. Actor 1: Distance vs Time - H0 = 600[ft], V0 = 50[KTAS]

Figure A.51. Actor 1: Height vs Time - H0 = 600[ft], V0 = 50[KTAS]
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Figure A.52. Actor 1: Velocity vs Time - H0 = 600[ft], V0 = 50[KTAS]

Figure A.53. Actor 1: Rate of Descent vs Time - H0 = 600[ft], V0 = 50[KTAS]

Figure A.54. Actor 1: Main Rotor RPM vs Time - H0 = 600[ft], V0 = 50[KTAS]
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Figure A.55. Actor 1: Main Rotor Collective Pitch vs Time - H0 = 600[ft], V0 = 50[KTAS]

Figure A.56. Actor 1: Tip Path Plane Angle vs Time - H0 = 600[ft], V0 = 50[KTAS]
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II Test Results for Actor 2

a Initial Conditions: H0=50[ft], V0=30[KTAS]

Figure A.57. Actor 2: Distance vs Time - H0 = 50[ft], V0 = 30[KTAS]

Figure A.58. Actor 2: Height vs Time - H0 = 50[ft], V0 = 30[KTAS]

99



Figure A.59. Actor 2: Velocity vs Time - H0 = 50[ft], V0 = 30[KTAS]

Figure A.60. Actor 2: Rate of Descent vs Time - H0 = 50[ft], V0 = 30[KTAS]

Figure A.61. Actor 2: Main Rotor RPM vs Time - H0 = 50[ft], V0 = 30[KTAS]
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Figure A.62. Actor 2: Main Rotor Collective Pitch vs Time - H0 = 50[ft], V0 = 30[KTAS]

Figure A.63. Actor 2: Tip Path Plane Angle vs Time - H0 = 50[ft], V0 = 30[KTAS]
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b Initial Conditions: H0=100[ft], V0=0[KTAS]

Figure A.64. Actor 2: Distance vs Time - H0 = 100[ft], V0 = 0[KTAS]

Figure A.65. Actor 2: Height vs Time - H0 = 100[ft], V0 = 0[KTAS]
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Figure A.66. Actor 2: Velocity vs Time - H0 = 100[ft], V0 = 0[KTAS]

Figure A.67. Actor 2: Rate of Descent vs Time - H0 = 100[ft], V0 = 0[KTAS]

Figure A.68. Actor 2: Main Rotor RPM vs Time - H0 = 100[ft], V0 = 0[KTAS]
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Figure A.69. Actor 2: Main Rotor Collective Pitch vs Time - H0 = 100[ft], V0 = 0[KTAS]

Figure A.70. Actor 2: Tip Path Plane Angle vs Time - H0 = 100[ft], V0 = 0[KTAS]
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c Initial Conditions: H0=300[ft], V0=0[KTAS]

Figure A.71. Actor 2: Distance vs Time - H0 = 300[ft], V0 = 0[KTAS]

Figure A.72. Actor 2: Height vs Time - H0 = 300[ft], V0 = 0[KTAS]
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Figure A.73. Actor 2: Velocity vs Time - H0 = 300[ft], V0 = 0[KTAS]

Figure A.74. Actor 2: Rate of Descent vs Time - H0 = 300[ft], V0 = 0[KTAS]

Figure A.75. Actor 2: Main Rotor RPM vs Time - H0 = 300[ft], V0 = 0[KTAS]
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Figure A.76. Actor 2: Main Rotor Collective Pitch vs Time - H0 = 300[ft], V0 = 0[KTAS]

Figure A.77. Actor 2: Tip Path Plane Angle vs Time - H0 = 300[ft], V0 = 0[KTAS]
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d Initial Conditions: H0=300[ft], V0=50[KTAS]

Figure A.78. Actor 2: Distance vs Time - H0 = 300[ft], V0 = 50[KTAS]

Figure A.79. Actor 2: Height vs Time - H0 = 300[ft], V0 = 50[KTAS]
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Figure A.80. Actor 2: Velocity vs Time - H0 = 300[ft], V0 = 50[KTAS]

Figure A.81. Actor 2: Rate of Descent vs Time - H0 = 300[ft], V0 = 50[KTAS]

Figure A.82. Actor 2: Main Rotor RPM vs Time - H0 = 300[ft], V0 = 50[KTAS]
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Figure A.83. Actor 2: Main Rotor Collective Pitch vs Time - H0 = 300[ft], V0 = 50[KTAS]

Figure A.84. Actor 2: Tip Path Plane Angle vs Time - H0 = 300[ft], V0 = 50[KTAS]
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e Initial Conditions: H0=500[ft], V0=10[KTAS]

Figure A.85. Actor 2: Distance vs Time - H0 = 500[ft], V0 = 10[KTAS]

Figure A.86. Actor 2: Height vs Time - H0 = 500[ft], V0 = 10[KTAS]
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Figure A.87. Actor 2: Velocity vs Time - H0 = 500[ft], V0 = 10[KTAS]

Figure A.88. Actor 2: Rate of Descent vs Time - H0 = 500[ft], V0 = 10[KTAS]

Figure A.89. Actor 2: Main Rotor RPM vs Time - H0 = 500[ft], V0 = 10[KTAS]
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Figure A.90. Actor 2: Main Rotor Collective Pitch vs Time - H0 = 500[ft], V0 = 10[KTAS]

Figure A.91. Actor 2: Tip Path Plane Angle vs Time - H0 = 500[ft], V0 = 10[KTAS]
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f Initial Conditions: H0=500[ft], V0=40[KTAS]

Figure A.92. Actor 2: Distance vs Time - H0 = 500[ft], V0 = 40[KTAS]

Figure A.93. Actor 2: Height vs Time - H0 = 500[ft], V0 = 40[KTAS]
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Figure A.94. Actor 2: Velocity vs Time - H0 = 500[ft], V0 = 40[KTAS]

Figure A.95. Actor 2: Rate of Descent vs Time - H0 = 500[ft], V0 = 40[KTAS]

Figure A.96. Actor 2: Main Rotor RPM vs Time - H0 = 500[ft], V0 = 40[KTAS]
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Figure A.97. Actor 2: Main Rotor Collective Pitch vs Time - H0 = 500[ft], V0 = 40[KTAS]

Figure A.98. Actor 2: Tip Path Plane Angle vs Time - H0 = 500[ft], V0 = 40[KTAS]
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g Initial Conditions: H0=600[ft], V0=40[KTAS]

Figure A.99. Actor 2: Distance vs Time - H0 = 600[ft], V0 = 40[KTAS]

Figure A.100. Actor 2: Height vs Time - H0 = 600[ft], V0 = 40[KTAS]
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Figure A.101. Actor 2: Velocity vs Time - H0 = 600[ft], V0 = 40[KTAS]

Figure A.102. Actor 2: Rate of Descent vs Time - H0 = 600[ft], V0 = 40[KTAS]

Figure A.103. Actor 2: Main Rotor RPM vs Time - H0 = 600[ft], V0 = 40[KTAS]
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Figure A.104. Actor 2: Main Rotor Collective Pitch vs Time - H0 = 600[ft], V0 =
40[KTAS]

Figure A.105. Actor 2: Tip Path Plane Angle vs Time - H0 = 600[ft], V0 = 40[KTAS]
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h Initial Conditions: H0=600[ft], V0=50[KTAS]

Figure A.106. Actor 2: Distance vs Time - H0 = 600[ft], V0 = 50[KTAS]

Figure A.107. Actor 2: Height vs Time - H0 = 600[ft], V0 = 50[KTAS]
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Figure A.108. Actor 2: Velocity vs Time - H0 = 600[ft], V0 = 50[KTAS]

Figure A.109. Actor 2: Rate of Descent vs Time - H0 = 600[ft], V0 = 50[KTAS]

Figure A.110. Actor 2: Main Rotor RPM vs Time - H0 = 600[ft], V0 = 50[KTAS]
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Figure A.111. Actor 2: Main Rotor Collective Pitch vs Time - H0 = 600[ft], V0 =
50[KTAS]

Figure A.112. Actor 2: Tip Path Plane Angle vs Time - H0 = 600[ft], V0 = 50[KTAS]
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