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Abstract

Every two to three years, U.S. Army officers must change duty stations, which en-

tails a selection process based on preferences. Currently, officers are assigned to units

using a stable-marriage algorithm. Two impracticalities occur within this process.

First, officers are required to submit strictly ranked preferences, not allowing indif-

ference among units. Second, the stable-marriage algorithm does not give flexibility

to alternative priorities.

This research focuses on two modifications to the current model. First, a mixed

integer program is created that allows the user, U.S. Army Human Resources Com-

mand, to consider other priorities: unit preferences and maximum officer disappoint-

ment. Second, generated data allowing officer indifference is tested and compared to

the stable-marriage baseline. These solutions are tested using 25 models, each created

by perturbing various parameters. Most models produce equivalent solutions, with

differences stemming from placing no priority on maximum officer disappointment.

These results are quantified and tested using metrics measuring officer satisfaction,

providing insightful knowledge to decision makers weighing policy changes in this

process.
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THE U.S. ARMY OFFICER-TO-UNIT ASSIGNMENT PROBLEM

I. Introduction

This chapter introduces the assignment process for United States (U.S.) Army

officers, how the U.S. Army Human Resources Command organizes the officer-to-unit

matchings, and the challenges with the current system. Research intent will then be

provided and a summary of the paper concludes Chapter I.

1.1 Background/Introduction

As of July 2022, there are 94,248 active duty officers in the U.S. Army [1]. Of those

officers, one-third of them are moved by the U.S. Army Human Resources Command

(HRC) annually. An officer typically stays in an assigned location for two to three

years, then will receive a Permanent Change of Station (PCS) to a different location.

In 2019, to help manage the assignments of officers to future locations, HRC adopted

what is called the Army Talent Marketplace Alignment Process (ATAP). Through

ATAP, the Assignment Interactive Module (AIM) is an interface that allows officers

and units to submit and ordinally rank their preferences [14].

At the beginning of each distribution cycle (DC), officers and units submit an

ordinal list of preferences. Officers submit their preferences for units, while units

submit their preferences for officers. Preferences are submitted from most desirable

to least desirable. HRC then takes the lists of preferences and matches officers to

units based on both lists, making this process two-sided.

1



1.2 Problem Statement

Currently, there are some impracticalities that occur within this process. The

preference list officers (units) create is a strict preference list, meaning every unit

(officer) must be strictly ranked. The quality of a preference list depends on how well

the officer (unit) fills out his or her preference list. This potentially creates a problem.

Suppose an officer has 100 billets to create an ordinal preference list from, and there

are highly desirable, desirable, indifferent, undesirable, and highly undesirable assign-

ments according to the officer’s preferences. He or she ranks the 15 highly desired and

desired billets and leaves the rest of the 85 billets unranked. Because the algorithm

requires the input of a complete list, the remaining 85 non-ranked assignments are

randomly assigned a preference. Within the pool of his or her 85 indifferent, desir-

able, and highly undesirable preferences, there is no way for the algorithm to know

how to place his or her indifference preferences ahead of the undesirable preferences.

An indirect potential consequence is the relationship between the officer receiving

or failing to receive a desired assignment and that officer’s subsequent morale and

retention.

In 2020, most officers, about 80%, received an assignment that was within their

top ten choices, and 55% received an assignment that was their first choice [14].

However, if an officer did not receive a top three preference, he or she was equally

likely to receive the bottom choice as the number four choice. The effect is a very large

number of reasonably content officers but a small number who are highly dissatisfied.

This poses a question that HRC must consider: Is it preferable to maximize satisfied

officers or minimize dissatisfied officers? The current approach favors the former at

the expense of a small number of the latter.

In this paper, the main research goal is to analyze the results of these different

scenarios and make suggestions based on the findings. Changing the current model

2



to incorporate this type of situation improves the overall happiness of officers and

assignment managers, which indirectly may affect other measures such as morale and

attrition rate.

A final challenge for the current AIM model is the need for analysts to manually

adjust the pure market solution, which is the initial solution the model produces.

Currently, about 5% of assignment pairings are adjusted from the pre-market solution

[5]. Some officers have constraints preventing them from being able to be assigned

in certain locations. Examples include an officer who is enrolled in the Exceptional

Family Member Program (EFMP) or an officer who needs a command assignment.

Minimizing the number of adjustments made on the pure-market solution will

decrease the amount of time assignment officers have to spend manually adjusting

issues, saving time and resources.

1.3 Research Objectives

Specific research objectives are formed:

1. Replicate results of the current stable marriage-based approach with a mixed

integer program.

2. Produce and quantify the effects of alternative objective functions on officer-unit

matchings in the MIP.

3. Propose and quantity the effects of alternative preferencing inputs.

MIP models are better suited for the addition of constraints and adjusting the

objective function relative to the current SMA approach. Therefore, creating a base-

line MIP model in the first objective creates a baseline for the latter two objectives.

The second and third objectives provide HRC leadership with information to support

3



future policy decisions. The current approach has been in place for a relatively short

period of time, and this research represents a continuous improvement process.

1.4 Methodology/Approach

This document is organized as follows. Chapter II provides an overview of relevant

background information. Chapter III details the process of creating the mixed integer

programming model and the stable marriage algorithm, testing these models, and

applying sensitivity analysis to each. Chapter IV presents and analyzes the results.

Finally, Chapter V discusses the conclusions drawn from the results and proposes

directions for future research.

4



II. Background and Literature Review

Overview

This chapter defines the assignment problem and describes methodologies em-

ployed to solve it, specifically the stable marriage algorithm (SMA) and mixed integer

programming (MIP).

2.1 The Assignment Problem

The assignment problem derives from the transportation problem [2]. Figure 1

graphically illustrates the transportation problem. We have two sets: origin points Oi

such that i = 1, 2, ...m represents the origin locations, and destination points Dj such

that j = 1, 2, ...n represents the destination locations. Each origin node Oi has a given

supply, si, and each destination node Dj has a given demand, dj. Traditionally, the

goal of the transportation problem is to minimize transportation costs while fulfilling

demand given supply. Equation (1) shows the linear program for the transportation

problem.

Figure 1: Complete bipartite graph of the transportation problem. [2]
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Minimize cx

subject to Ax = b

x ≥ 0

(1)

In Equation (1), c, the cost of transportation, is being minimized. In this instance

of the transportation problem, x denotes the number of units shipped from origin node

i to destination node j. Matrix A is a node-arc incidence matrix, which indicates

which nodes are able to use which arcs. Finally, vector b is the supply and demand.

In this case, supply and demand are equivalent, hence the equality sign in the first

constraint.

The assignment problem is a special case of the transportation problem. In this

context of the assignment problem, there are an equal number of m individuals and

n jobs, and the goal is to minimize cost while matching sets in a one-to-one fashion.

From the transportation problem, let si = 1 for all i and dj = 1 for all j. There is an

associated cost, cij, with assigning individual i to job j. Only one individual can be

assigned to one job, hence the one-to-one matching. This also means xij is a binary

variable where xij = 1 indicates there is a matching from i to j, and xij = 0 indicates

otherwise.

Many applications to the assignment problem occur throughout the literature.

Some examples include matching medical students to hospitals [15], college applicants

and colleges [7], and weapons to targets [13]. The two former applications aim to

maximize preference in choice between the agents, and the latter aims to maximize

destruction probabilities when matching particular weapons to targets. In this paper

specifically, the assignment problem is used to maximize the preference matchings

between officers and units.

6



2.2 Mixed Integer Programming Approach to the Assignment Problem

The first instances of mixed integer programming (MIP) arguably began with the

work of Dantzig, Fulkerson, and Johnson when they created a cutting plane technique

to solve the Traveling Salesman Problem [8]. Their work was a precursor to Land

and Doig’s branch and bound technique which iteratively takes the floor and ceiling

of each variable needing to become an integer until an optimal solution is found

[10]. Later, Dakin was able to improve Land and Doig’s method by adding bounding

restraints which shrinks the feasible region at each iteration [4], rather than looking

for a specific integer in Land and Doig’s work.

Bazaraa, Jarvis, and Sherali recognize the relationship between the transporta-

tion problem and the assignment problem, and develop the following mixed integer

program for the assignment problem [2]:

Minimize
m∑
i=1

m∑
i=1

cijxij

subject to
m∑
i=1

xij = 1, i = 1, ...,m

m∑
i=1

xij = 1, j = 1, ...,m

xij = 0 or 1, i, j = 1, ...,m.

(2)

Assuming the matrix A is unimodular, we can replace xij = 0 with xij ≥ 0 to obtain

7



the following matrix-form MIP:

Minimize cx

subject to Ax = b where b =

1
1


x ≥ 0

(3)

In the objective function, c is the cost associated with matching i and j. xij is

a binary variable that indicates if the matching of i and j, where xij = 1 indicates

the matching of i and j exists, and xij = 0 indicates otherwise. In order to assume

modularity in A, i and j must have the same cardinality. If necessary, dummy

variables may be employed to satisfy this condition.

Cimen uses a similar MIP to assign Turkish Air Force personnel to assignments [3].

When modeling, three objective functions are considered, from most to least impor-

tance: maximize organizational objective, maximize career objective, and maximize

personal preference objective. Note that maximizing is the direction of the objective

function rather than minimizing it. With these objective functions in mind, and order

of importance, Cimen uses a maximin principle. The objective function maximizes

the organization objective, and the constraints maximize the minimum value for the

latter two constraints. Cimen then runs different maximin constraint inputs to test

how it affects the objective function.

2.3 The Stable Marriage Algorithm

The SMA was first introduced by Gale and Shapley in 1962 [7]. In their work,

the most notable contribution was to show that there is always an optimal solution

for a two-sided bipartite problem. They first introduce the SMA in terms of a college

admissions selection, with one agent being the applicants and the other being the

8



colleges.

It is important to note the assumptions associated with the Gale-Shapley (GS)

algorithm [7]. The first is that there is an equal number of applicants to colleges. The

second is that there is a strict ordinal preference among both sides. This means that

there are no instances of ties in the preference ranking.

In order to conceptualize the problem in a more suitable context, Gale and Shapley

altered the college admissions setting into marriage, hence the name “stable marriage

algorithm”[7]. Instead of matching student applicants to colleges, the goal of the mar-

riage problem is to marry, or match, men and women according to their preferences.

The following definitions provide a foundation for all follow-on work related to the

SMA [7]:

• Unstable: There exists a man and woman who prefer each other to their current

partners. In other words, if there exists two couples in a solution, say (mi, wi)

and (mj, wj) such that mi and wj prefer each other to their current partners,

an instance of unstable matching occurs. This matching is also referred to as a

blocking pair.

• Stable: A solution such that no unstable matchings exist.

• Optimality: Every player is at least as well off in their matching solution as

they would be in any other solution.

The SMA iterates through the list of men’s preferences. If a man is not engaged,

the algorithm iterates through his preferences proposing to the most preferred woman

on his list. If the woman is not engaged, the man and woman become engaged, or

in other words, a matching forms. If the man proposes to a woman who is already

engaged, she has a choice of either breaking off her engagement to be with the man

or staying with her original match. The algorithm iterates through all the men’s

9



preferences until there are no unengaged men. This is illustrated in Algorithm 1,

which is adopted from Ferguson[6].

Algorithm 1 Pseudocode for the Gale-Shapely Stable Marriage Algorithm

M is the set of Men, W the set of Women
for m ∈M,w ∈ W :
prefm, prefw are preference lists for each men, women
S = ∅; the pairs (m,w) in the current matching

procedure Stable Marriage(prefm, prefw)
while ∃ m ∈M s.t.(m,w) /∈ S for some w ∈ W do

m← select m s.t. m /∈ p, ∀p ∈ S
w ← pop(prefm)
p← p ∈ S where w ∈ p
if w /∈ p for some pair p ∈ S then

S ← (m,w)
else if w prefers m to current match then

remove pair p from S
S ← (m,w)

else
do nothing

end if
end while

end procedure

Gale and Shapley determined that a unique optimal solution is possible but not

guaranteed; if no unique optimal solution is possible, there can be more than one best

set of matchings [7]. Depending on whether the man or woman proposes, there will

be a stable solution with optimality towards men or women, respectively. In the case

above, the solution will be optimal for the men. It should be noted that there are

two different kinds of optimality: optimality toward one agent or a unique optimal

solution. Regardless of which optimality the algorithm finds, a stable solution or a

stable set of matchings, is always able to be found.

The original Gale-Shapley algorithm is a significant basis that has been added

onto since it was written. Manlove used the GS algorithm to solve the Hospital Res-
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idents (HR) problem[11]. In the HR problem, there are two sets of agents: medical

student residents and hospitals. Each resident and hospital provides a strict order of

preferences, and if a resident does not include hi ∈ H where hi is a hospital in H, the

set of hospitals, then hi is said to be unacceptable to that resident. The same concept

applies to hospitals with residents. If a hospital (resident) is unacceptable, that res-

ident (hospital) will not be on that hospital’s (resident’s) preference list. This gives

no chance that a resident (hospital) will be matched with an unacceptable hospital

(resident). The hospitals, H, have a quota of residents they must fill. As a resident

proposes to the first hospital on their list, if the hospital’s quota is oversubscribed,

the hospital may reject its worst assigned resident and match with the proposing

resident. The biggest finding from Manlove is for any stable matching found between

residents and hospitals, all other stable solutions have the same assigned and unas-

signed residents, and the same hospitals meet or do not meet their quota by the same

amount of residents for all solutions.

Roth’s National Intern Matching Program (NIMP) algorithm provides a step by

step way to solve a problem similar to the HR problem [15]. In order to describe

the algorithm, constraints must first be established. There are two sets of agents:

medical interns and hospitals. Each intern submits a strictly ranked preference list

of hospitals, and each hospital does the same for the interns. Each hospital indicates

a quota it aims to fill. This indicates how many interns a hospital desires. In this

problem, it is important to note that lists need not be complete, meaning a preference

list may have unacceptable matchings. If an intern marks a hospital as unacceptable,

the intern is indicating he or she would rather be unmatched than be matched with

that hospital.

In the first step of NIMP, any 1:1 matchings are created [15]. Specifically, if an

intern has a top-ranked hospital, and a hospital has that same intern in their top
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rankings, a match is formed. If a hospital has quota q, the q highest students in the

hospital preferences are considered top ranked. At each iteration of this step, prefer-

ence rankings are updated. Once an intern and hospital are matched, all successive

hospitals on the intern’s preferences are deleted. Once this is done, 1:1 matchings are

looked for again, and preferences are updated until there are no more 1:1 matchings.

The algorithm then looks at 2:1 matchings, meaning any intern who has a hospital

second ranked, and a hospital who has a student top-ranked, are matched [15]. The

same deletion of successive preferences as described previously is implemented. These

steps are iterated through until no 2:1 matchings are found. The algorithm continues

this pattern of matching k:1 interns to hospitals until k = n where k = 1, 2, ..., n and

n is the last ranked hospital on an intern’s preference list.

At the completion of NIMP, there may be interns who remain unmatched and

hospitals who have not filled their quotas [15]. In the problem of this paper, no

officers or jobs should remain unmatched. However, the idea of cycling through top-

ranked preferences in the NIMP algorithm will prove useful in the SMA.

Stable Marriage with Ties

It is impractical to assume a strict ranking of preferences occurs in every situation.

In an instance of stable marriage with ties (SMT), a solution is weakly stable if there

is no x and y such that x and y are not matched, but both prefer each other to their

current match [9]. A solution is strongly stable if there is no matching (x, y) ∈ S such

that x strictly prefers y, and y is indifferent between x and another partner. Finally,

a solution is super stable if there is no such matching (x, y) ∈ S such that either

partner strictly prefers another partner to their own or is indifferent between them.

Section 2.3 illustrates the definitions defined.

Irving describes an algorithm for SMT that considers two agents who must all be
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Table 1: Stability Definitions

Term Definition Symbolic Representation

Weakly Stable

No matching (xi, yi) /∈ S such that

both partners prefer each

other to their current partners.

∀(xi, yi) /∈ S,

xi : yi ≻ y−i,

yi : xi ≻ x−i

Strongly Stable

No matching (xi, yi) ∈ S such that

xi strictly prefers y−i, and yi

strictly prefers xi or is indifferent.

∀(xi, yi) ∈ S,

xi : yi ⊀ y−i,

yi : xi ⪰ x−i

Super Stable

For all (xi, yi) ∈ S, neither xi nor yi

strictly prefer another partner or is

indifferent between them.

∀(xi, yi) ∈ S,

xi : yi ⪯̸ y−i,

yi : xi ⪯̸ x−i

matched by the end of the algorithm [9]. However, Irving specifically looks at finding

strongly stable and super stable matchings, where this paper is only concerned with

weakly stable matchings. Nonetheless, his insights are still useful. Irving names the

following algorithm super. Men and women are the set of agents. Each agent is

allowed to submit ties in his or her preferences. When cycling through the men’s

preferences, similar to Roth’s cycling in the NIMP algorithm, if a proposing man has

two or more women tied at the head of his preferences, he proposes to all of them

simultaneously. All men inferior to the proposing man on a woman’s preference list

are deleted. Again, this is similar to the NIMP algorithm where successive hospitals

on an intern’s list are deleted once a match is made. A series of proposals are iterated

through until either a man’s preference list is empty or all men are engaged. If there

is a man whose list is empty and is unmatched, it is concluded that there is no

super stable matching for these sets of agents. Irving goes into detail about a strong

algorithm that determines if a strongly stable matching is possible; it builds off the

super algorithm. For more information, see [9].
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As previously mentioned, Gale and Shapley determined there is always a set of

stable matchings [7]. However, their conditions required a strict ordinal ranking and

same cardinality for each agent. This paper specifically looks at the incorporation of

ties in matching preferences. This type of problem does not guarantee a one-sided

optimal solution like it does for an instance of SMA with strict preferences, but a

stable solution is still able to be found by breaking the ties in some manner. This

ensures there is a weakly stable solution in any instance of SMT [12].

2.4 Concluding Remarks

The definitions and models in this chapter will be applied to the methodology in

this paper. Namely, the mixed integer program and the stable marriage algorithm. In

this paper, this aim is to optimize the matchings between Army officers and bidding

units. Different objective functions and their weights will be considered in order to

find a solution that best fits HRC’s needs.
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III. Methodology

Overview

This chapter describes two methods of solving the U.S. Army Officer assignment

problem: mixed integer programming and the stable marriage algorithm.

3.1 Assumptions and Data

In each of the models created, data is generated randomly and ties are permitted

in different ways depending on the model. Ties in unit preferences for the SMA

will not be considered to minimize the complexity of the problem. This is not ideal

because units are generally indifferent to their choice of officer; however, the main

contribution of this paper is the MIP model, which can accommodate ties on both

sides.

One question that must be considered is how ties will be submitted into officer

preferences. This question entirely depends on HRC’s needs and what they suit best,

but the way ties are chosen in this paper seeks to minimize officers being able to

manipulate preferences for their own advantage.

The generated random preferences with ties are adjusted so that if an officer has a

tie between two units, the next ordinal rank in the preference is skipped over. Assume

the initial set of preferences an officer has is [3, 4, 3, 1, 5], where each index represents

a unit number, and each input in that respective index is an officer’s preference for

that unit. This means that the officer has a preference of 3 for unit 1, preference of

4 for unit 2, etc. This list then gets converted to [2, 4, 2, 1, 5]. Preferences for unit

1 and 3 are changed because there was no preference of 2, and unit 4 (the officer’s

highest preference) is not tied with any other unit. The officer’s preference for unit

2 needs no changing because the ties in units 1 and 3 cause a skip in the ordinal list
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from 2 to 4.

For the remainder of this paper, i is an officer in the set of officers, I = 1, 2, ..., n,

and j is a unit in the set of units, J = 1, 2, ..., n. The cardinality of I and J are

assumed to be equal, meaning there are an equal number of officers and units being

considered.

3.2 Mixed Integer Program

In the context of this particular problem, specific constraints and objective func-

tions are created in order to satisfy the needs of HRC. This section explains each

constraint and the objective with all its terms.

3.2.1 Sets

Each officer and unit has a preference list, where 1 is the highest preference; oij

denotes the preference of officer i for unit j, and uij gives the preference of unit j for

officer i.

3.2.2 Decision Variables

The decision in this problem is how to assign officers to units. The first decision

variable, xij, is a relaxed binary indicator variable that represents the matching from

i to j. If xij = 1, then officer i is sent to unit j; if xij = 0, then officer i does not go

to unit j.

A second decision variable, q, represents the greatest ranking that a matched

officer gives to his or her destination unit. In other words, q quantifies the disap-

pointment of the least satisfied officer in the movement slate. In Section 3.2.5, it is

shown how exactly q aids the decision variable xij.
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3.2.3 Assignment Constraints

The following constraints ensure that each officer is assigned to a unit and each

unit has an officer assigned to it:

∑
j∈J

xij ≥ 1, ∀i ∈ I

∑
i∈I

xij ≤ 1, ∀j ∈ J.

In the first constraint, the decision variables associated with each officer are

summed, ensuring each officer is matched with at least one unit. In the second con-

straint, the decision variables associated with each unit are summed, ensuring each

unit is matched with at most one officer. Note that the inequalities in the assign-

ment constraints above differ from the assignment constraints in Equation (2). This

adjustment lessens computational complexity without changing the optimal solution.

Because each officer must be assigned to at least one unit and each unit must be

assigned to at most one officer, and the cardinality of I and J are equal, a one-to-one

match among sets remains.

3.2.4 Stability Constraint

Like any assignment problem considering preferences, one of the goals of this

research is to provide stability among matches. Specifically, given a solution, there

are no i and j such that they are not matched but prefer each other to their current

partners. This concept was introduced in Section 2.3 with the notion of weak stability.

The following set of constraints achieves this desired outcome.

∑
s≺ij

xis +
∑
t≺ji

xtj + xij ≤ 1, ∀i ∈ I, j ∈ J.
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In the first summation, s represents all units desired more than the matched unit in an

officer’s preference list. In the second summation, t represents all officers desired more

than the matched officer in a unit’s preference list. When combining the summation

of the set of officers s and the set of jobs t, and xij, there will be no instance where

it is greater than 1. Given an officer-unit matching, every unit an officer preferences

more must be assigned to a more preferred officer, and every officer a unit preferences

more must be assigned to a more preferred officer.

3.2.5 Minimax Constraint

One of the past issues HRC has seen with the current model is that there is a small

number of officers who receive highly undesirable unit matchings while the majority

receive one of their desired preferences. The effect is a large number of satisfied

officers but a small number whose disappointment is highly disproportionate. In

order to relieve this issue, and to ensure a minority of officers do not receive a very

undesired unit, a minimax constraint is added to the model.

∑
j∈J

oijxij ≤ q, ∀i ∈ I

The minimax constraint minimizes the maximum value preference an officer is

matched with. The variable being minimized, q, represents the least preferred unit

any officer receives. It is important to note lower preference numbers are more de-

sired than the higher ones, meaning a minimum preference number is better than

a maximum. Therefore, the direction of preference is to minimize. Minimizing the

maximum ranked unit an officer receives attempts to ensure each officer has a chance

at not receiving a highly undesired unit.

This model only considers a minimax constraint for officer preferences and not

the unit preferences. Officers receiving their more preferred match is more valued to
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HRC than the units with their preferences. Unit matchings are clearly considered,

as seen in Section 3.2.6; however, a minimax constraint for unit preferences is not

essential for the purposes of this model.

3.2.6 Objective Function

So far in the model, officer preferences, unit preferences, and minimax constraints

have been emphsized with importance. Therefore, in the objective function, it is

appropriate to minimize a combination of these values.

∑
j∈J

∑
i∈I

wooijxij + wuuijxij + wqq

Each w represents a weight associated with the following term. wo represents the

weight associated with the officer preferences; wu represents the weight associated

with the unit preferences; and wq represents in weight associated with the minimiax

constraint. These weights allow for easy manipulation of the value put on each term.

For instance, if wanting to place more value in the officer preferences, an increase in

wo is an easy adjustment. The example in Section 3.2.7 demonstrates this concept.
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Equation (4) displays the full MIP.

Minimize
∑
j∈J

∑
i∈I

wooijxij + wuuijxij + wqq

subject to
∑
j∈J

xij ≥ 1, ∀i ∈ I

∑
i∈I

xij ≤ 1, ∀j ∈ J

∑
s≺ij

xis +
∑
t≺ji

xtj + xij ≤ 1, ∀i ∈ I, j ∈ J

∑
j∈J

oijxij ≤ q, ∀i ∈ I

xij ≥ 0, i, j = 1, ..., n.

(4)

3.2.7 MIP Example

The following examples demonstrate how the different algorithms in this chapter

operate. Each demonstration will use the data from Table 2.

Table 2: Toy Example

j1 j2 j3
i1 (1, 2) (3, 3) (3, 1)
i2 (2, 3) (1, 1) (3, 3)
i3 (3, 1) (3, 2) (1, 2)

This table is set up in matrix form where each row represents an officer’s prefer-

ences toward each unit and each column represents a unit’s preferences toward each

officer. In this case three officers are candidates for assignment to three units. Inside

the matrix, each cell has a value of (officer preference, unit preference) format. For

example, cell (i1, j1) has a value of (1, 2) meaning i1 has a preference of 1 for j1, and

j1 has a preference of 2 for i1.

For ease of understanding, each w may have a minimum value of 0 and maximum

value of 1. Furthermore, the relationship between the officer and unit weights give
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and take from one another; the more weight placed on the officers’ preferences, the

less can go to the units, and vice versa. Therefore, the weights associated with officers

and units, wo and wu, respectively, must sum to 1. The weight wq is not a part of a

special relationship that wo and wu share; it can hold values from 0 to 1. Table 3 and

Table 4 demonstrate a simple example where different solutions occur when applying

different weights to the objective function.

When inputting these preferences into the MIP with different weights, different

solutions arise. For simplicity, let this instance of MIP only consider the officer and

unit preferences in the objective function, and not the minimax variable. Table 3

shows the solution when wo = 1, wu = 0, and wq = 0, and Table 4 shows the solution

when wo = 0, wu = 1, and wq = 0.

Table 3: Officer-Biased Solution

j1 j2 j3
i1 (1, 2) (2, 3) (2, 1)
i2 (2, 3) (1, 1) (3, 3)
i3 (2, 1) (2, 2) (1, 2)

Table 4: Unit-Biased Solution

j1 j2 j3
i1 (1, 2) (2, 3) (2, 1)
i2 (2, 3) (1, 1) (3, 3)
i3 (2, 1) (2, 2) (1, 2)

Table 3 has an optimal solution of (i1, j1), (i2, j2), (i3, j3) where the sum of officer

and unit matching preferences is 8. Table 4 has an optimal solution of (i3, j1), (i2, j2),

(i1, j3) where the sum of matching preferences is also 8. In this example, both the

officer-based solution and unit-based solution provide equivalent sums of matching

preferences, but they are not the same solution. There is an officer-optimal solution

and a unit-optimal solution. One of the goals of this research is to analyze how

solutions may change depending on different objective function parameters. In larger

instances such as those in Chapter IV, solutions will vary greatly depending on those

parameters.
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3.3 Stable Marriage with Ties

Similar to the MIP, officer preferences and unit preferences are inputs to the

algorithm. The data from both sets of preferences are randomized as two separate

data frames, with ties allowed in officer preferences.

The SMT requires a set of officer and unit preferences such that officer preferences

may have ties. Suppose we have a set of two officers, i1 and i2, being matched to a

set of two units, j1 and j2. Let (i1, j1) be a matching p such that p is in S. At the

beginning of the next iteration, the algorithm begins by taking the first free officer i2

and assigning j1 to be its top preferred unit. If j1 is not part of a matching p such that

p is in S, (i1, j2) is added to S. However, this is not the case because j1 is in S. If j1 is

part of a matching p in S, which is the case, the algorithm checks to see if j1 strictly

prefers or is indifferent to i2 and its current matching, i1. If this is the case, the

previous matching (i1, j1) is removed from S, and the new matching (i1, j2) is added

to S. An additional step is made if j1 strictly prefers i2 to its current matching: j1 is

removed from the previous officer’s preferences. This way, j1 can never be matched

with i1 again. Every time a matching p is added to S, all successors of the matched

officer on the unit’s preference list are deleted. The algorithm then proceeds to the

next free officer and iterates through these steps until none remain.

The goal of this SMT is to find a stable solution when ties are included in officer

preferences. The most significant modification from Section 2.3 is the consideration

of indifference. If a unit receives a proposal from an officer who is preferred higher

or indifferent than their their current officer, the previous match is deleted and the

proposing officer and unit are placed in the matching set. If the unit strictly prefers

the proposing officer, then that unit is removed from the previous officer’s preferences.

This avoids blocking pairs and aids the goal of finding a stable solution.

Because the algorithm iterates through the set of free officers, assigning j to be
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Algorithm 2 Pseudocode for Stable Marriage with Ties

I is the set of Officers, J the set of Units
for i ∈ I, j ∈ J :
prefi, prefj are preference lists for each officer, unit
S = ∅; the pairs (i, j) in the current matching
F = i ∈ I where i /∈ S are the officers not currently in S

procedure Stable Marriage with Ties(prefi, prefj)
while ∃ i ∈ I s.t.(i, j) /∈ S for some j ∈ J do

i← pop(F)
j ← pop(prefm)
p← p ∈ S where j ∈ p
if j /∈ p for some pair p ∈ S then

S ← (i, j)
else if j prefers i or is indifferent to current match then

if j strictly prefers i then
remove j from prefi∈p

end if
F ← i ∈ p
remove pair p from S
S ← (i, j)

else
do nothing

end if
remove successors of i from prefj

end while
end procedure
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the relevant top preferred unit, the algorithm is officer-biased. Solutions outputted

by this SMT will be optimal toward the officers’ preferences, not the units’.

In the case of Algorithm 2, the following steps find the solution from Table 2:

Step 1:

j1 j2 j3

i1 (1, 2) (2, 3) (2, 1)

i2 (2, 3) (1, 1) (3, 3)

i3 (2, 1) (2, 2) (1, 2)

Current: S = ∅, F = {i1, i2, i3}
Let i = i1, then j = j1

j /∈ p such that p ∈ S

→ S gets (i1, j1)

Step 2:

j1 j2 j3

i1 (1, 2) (2, 3) (2, 1)

i2 (2, 3) (1, 1) (3, 3)

i3 (2, 1) (2, 2) (1, 2)

Current: S = {(i1, j1)}, F = {i2, i3}
Let i = i2, then j = j2

j /∈ p such that p ∈ S

→ S gets (i2, j2)

Step 3:

j1 j2 j3

i1 (1, 2) (2, 3) (2, 1)

i2 (2, 3) (1, 1) (3, 3)

i3 (2, 1) (2, 2) (1, 2)

Current: S = {(i1, j1), (i2, j2)}, F = {i3}
Let i = i3, then j = j3

j /∈ p such that p ∈ S

→ S gets (i3, j3)

Results:

j1 j2 j3

i1 (1, 2) (2, 3) (2, 1)

i2 (2, 3) (1, 1) (3, 3)

i3 (2, 1) (2, 2) (1, 2)

S = {(i1, j1), (i2, j2), (i3, j3)}

F = ∅

The algorithm first assigns the free officer to be i1, and j to be j1 because i1 has

a preference of 1 for j1. There are no matches p in S so the match (i1, j1) is added

to S and i1 is no longer in the set of free officers F . In the second step, i is assigned

24



to the next free officer, i2; i2’s first preference is j2, so j = j2. j2 is not part of a

matching in the set S, so (i2, j2) is added to S. i2 is then removed from F . In the

third step, i = i3, and j = j3 because that is i3’s first preference. Unit j3 is not part of

a matching in the set S, so (i3, j3) is added to S. The algorithm terminates because

F is empty, and the set S is outputted. This particular solution is a stable solution,

meaning there are no blocking pairs.

Figure 2 illustrates what Algorithm 2 does in an instance where two officers have

the same preferences. Initially, the set F = {i1, i2} and S = ∅. First, i1, the first

officer in F , proposes to his or her first preference, j1. There are no matchings in S,

so j2 accepts and the match (i1, j1) is added to S. Second, i2, the next officer in F ,

proposes to his or her first preference, j1. However, j1 is already in S, and j1 strictly

prefers i2 over i1. As a consequence, officer i1 is added to F and removed from j1’s

preferences, and the match (i1, j1) is removed from S while (i2, j1) is added. Third,

i1 is forced to propose to j2, who is not in S, and the match is made. F is empty,

and the solution S = {(i2, j1), (i1, j2)} is stable.

Figure 2: Example of Algorithm 2 when two officers have the same preferences.

3.4 Evaluation Metrics

To achieve any one of the research objectives from Chapter I, evaluation metrics

must be established. The goal of this section is to prelude the sensitivity analysis

tested in Chapter IV.
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3.4.1 Current Metrics

HRC currently uses three metrics to evaluate the quality of their matching solu-

tions:

• Product Preference (PP):
∑

i∈I
∑

j∈J oijuijxij

• Total Product Preference (TPP):
∑

j∈J oijxij ∀i ∈ I

• Overall Product Preference (OPP):
√

TPP
Number of Pref’d Matches

Product preference (PP) calculates the sum of the products between each officer-

unit matching. In the solution found in Table 3, the PP = 1 ∗ 2 + 1 ∗ 1 + 1 ∗ 2 = 5.

Total product preference (TPP) sums the officers matched preferences. In Table 3,

TPP = 1 + 1 + 1 = 3. The overall product preference (OPP) is a metric specific to

the current algorithm. The square root of TPP over the number of matches where

officers and units preferred each other is calculated. Currently, officers and units do

not necessarily need to state a preference for each opposing agent in the set, so OPP

refers to the officers and units that did prefer each other.

PP and TPP will be calculated in Chapter IV; however, because OPP is specific

to the current algorithm, a similar, but different metric will be used instead. The

number of officers who receive a unit within their top three choices, which is also

mentioned in the next section, will be used to replace OPP.

3.4.2 Other Metrics

In the scope of metrics, there are two main categories of interest: comparison

metrics and quality metrics. The former will compare the current algorithm’s solution

to some baseline, while the latter focuses solely on the specific algorithm’s solution.

Comparison metrics:

• Number of officers receiving a different unit in current versus new model.
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• Number of officers receiving a less preferred unit.

• Number of officers receiving a more preferred unit.

• Average change in different matchings.

Quality metrics:

• Officer cost: sum of matched preferences that officers receive. This is equivalent

to TPP.

• Unit cost: sum of matched preferences that units receive.

• Number of officers receiving a first choice.

• Number of officers receiving a top three choice.

• Average preference of unit received by officer.

• Highest preference an officer receives, or q.

• Number of blocking pairs.

Table 5: Metrics for Table 2.

MIP
wo = 1,
wu = 0,
wq = 1

MIP
wo = 1
wu = 0
wq = 0

MIP
wo = .5
wu = .5
wq = 1

MIP
wo = .5
wu = .5
wq = 0

MIP
wo = 0
wu = 1
wq = 1

MIP
wo = 0
wu = 1
wq = 0

SMT

Officer Cost 3 3 3 3 3 5 3
Unit Cost 5 5 5 5 3 3 5
PP 5 5 5 5 5 5 5
Num Off Rec’d 1st 3 3 3 3 3 1 3
Num Officers Rec’d Top 3 3 3 1 1 1 3 3
Off Avg Pref Rec’d 1 1 1 1 1 1.67 1
q 1 1 1 1 1 2 1
Blocking Pairs 0 0 0 0 0 0 0
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3.5 Summary

Quantifying these metrics to the mixed integer program and stable marriage al-

gorithms gives HRC insight on how valuable modifying their current algorithm may

be. It provides clear differences, making it easy to see the impact of this research.

In the next section, these models and metrics are applied to generated data sets in

order to analyze the impact of current and new models.
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IV. Results and Analysis

4.1 Introduction

This chapter provides and discusses results for MIP models using randomly gen-

erated officer and unit preference data. Each data set tested uses 100 officers and 100

units. Section 4.2 and Section 4.3 each test the data using a model varied by twenty-

five different sets of weights. The weights associated with the three components of

the MIP objective function: officer preference, unit preference, and maximum officer

disappointment (minimax). Section 4.2 uses a data set with strict ordinal prefer-

ences for both officers and units. Section 4.3 uses a data set permitting officers to be

indifferent but still requiring units to produce strict preferences.

Section 4.4 contains additional results and statistical inference on metrics for select

models, chosen based on the results from Section 4.2 and Section 4.3, obtained using

25 replications of randomly-generated data. In all cases, a baseline SMA model is

created from the same data as used by the MIP models for use as a baseline for

comparison metrics.

The SMA and SMT algorithms produced the same results whether the input

preference data contained ties or not. Without ties, this result is not a surprise.

When considering ties, it is less intuitive, but still explainable. Because units must

input preferences in a strict ranking, the successive officers in a unit’s preference list

are deleted in the same manner for both algorithms. This means that each time

a new match is made in each algorithm, the same steps are taken to ensure less

preferred officers are not matched with the matched unit in future iterations. For this

reason, the choice of SMA or SMT as the baseline model has no effect on results or

conclusions.
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4.2 Without Ties

This study’s first research objective is accomplished by replicating the SMA base-

line with a MIP. Figure 3 shows the results from different weights applied in the MIP.

The figure has five main subplots being tested against different weights on q. Each

subplot tests different weights on officer and unit preferences. Proceeding from left

to right along the x-axis, weight on officer preferences decreases while weight on unit

preferences increases. The dark blue and light blue bars depict the summed officer

and unit matching preference cost, respectively. The brown bars depict the baseline

for officer cost and total cost. As a reminder, lower costs are preferred.

Figure 3: SMA solutions are replicated by the majority of MIP solutions in the
no-ties data set.

As seen in Table 6, weights of wo = 1, wu = 0, wq = 0 result in an exact replication

of the baseline, given the mechanics of SMA. Additionally, Figure 3 shows that a

majority of the MIP instances return the same results as the base case. The only

deviation from the SMA is when wq = 0 in each of the last three subplots. When there

is zero value placed on the minimax constraint and the weight placed on the officers’
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Table 6: Metrics for the no-ties data set.

SMA
Baseline

MIP
wo = .5,
wu = .5,
wq = 0

MIP
wo = .25
wu = .75
wq = 0

MIP
wo = 0
wu = 1
wq = 0

Officer Cost (TPP) 650 863 1387 1387
Unit Cost 1398 1084 679 679
PP 9193 9897 10022 10022
Num Officers Rec’d 1st 16 13 7 7
Num Officers Rec’d Top 3 42 35 25 25
Officer Avg Pref Rec’d 6.5 8.63 13.87 13.87
q 30 33 79 79
Blocking Pairs 0 0 0 0

preferences does not exceed 0.5, a different solution is produced. In these solutions,

officers are generally matched with less preferred units, but units are matched with

more preferred officers.

An additional model with weights of wo = 0, wu = 0, wq = 1 determines what

happens when weight is placed only on the minimax constraint. It is found that the

results of this model is the exact same as the baseline and, consequently, the majority

of the MIP models.

In order to assess the quality of matchings, Figure 4 plots product preference

(PP) against each set of weights. The three sets of weights that deviate from the

baseline in Figure 4 are the same as those that deviate in Figure 3. PP is noticeably

higher in those three cases, indicating that the overall officer-unit matchings are higher

than those in the baseline, where higher preferences indicate less-desired destinations.

Even if unit satisfaction is higher, it does not offset the officer dissatisfaction in the

PP calculations.

Table 6 displays the specific differences between the SMA baseline and the deviated

MIP instances. The SMA baseline column represents all MIP instances where the

solutions are equivalent, and it is compared against all deviated MIP instances. A

higher PP from Figure 4 implies the other metrics tested are worse. Fewer officers have
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Figure 4: Stacked bar plot for product preference versus variable weights.

a first choice or top three match in the instances where PP is higher. The average

officer preference match and the q constraint also output higher results, meaning

officers will generally be less satisfied with the matched units. The number of officers

receiving first or top three choice are lower, which also shows inferior metrics to the

SMA. The highest preference an officer receives is higher in the MIP instances, which

is expected because the weight of the minimax constraint is zero. Lastly, the number

of blocking pairs is zero in each scenario, indicating the solutions produced in each

algorithm are stable.

Table 7 contains comparison metrics for the different scenarios. Like in Table 6,

SMA and all equivalent solutions are represented in the first column. Table 7 shows

that any solution not equivalent to the baseline produces a worse outcome for the

officers. The deviated MIP instances assign officers to less preferred units, and no

officers get a more preferred unit, which also correlates to the average officer preference

increase.
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Table 7: MIP solutions different than the baseline are unfavorable to officers with
the no-ties data set.

(Officer Weight, Unit Weight, Minimax Weight) (1, 0, 0) (.5, .5, 0) (.25, .75, 0) (0, 1, 0)
Officers Rec Different Unit 0 21 47 47
Officers Rec Less Pref’d Unit 0 21 47 47
Officers Rec More Pref’d Unit 0 0 0 0
Officer Pref Avg Change 0 +10.14 +15.68 +15.68

4.3 With Ties

In the no-ties data set, it is easy to replicate the SMA Baseline with a MIP;

however, a data set with ties does not share that characteristic. Figure 5 shows the

baseline solution with the dark horizontal lines and how it compares to the instances

of the MIP, and Table 8 shows a more detailed insight on how the different algorithms

perform.

Figure 5: Minimax constraint is the only varying contributor to MIP solutions in
each subplot.

The first observation in Figure 5 is that the officer cost is lower in the majority of

the MIP instances compared to the baseline. The only instances where the MIP fails

to perform better for officer cost is when wq = 0. The first subplot gives complete

weight to officer preferences and zero weight to unit preferences, and the effect is
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that minimax weight has no effect on either officer or unit cost. Observing from

left to right along the x-axis, less weight is placed on officer preferences and more

on unit preferences. In this regard, Figure 5 displays a similar trend as Figure 3

from the no-ties data set. Officer cost increases and unit cost decreases, specifically

when wq = 0. Otherwise, the majority of solutions are equivalent. Interestingly, the

last four subplots produce exactly the same solutions, except when wq = 0. This

may imply that any weight on wq forces a specific solution; however, future work is

necessary to substantiate this claim.

Figure 6: Majority of MIP PP Perform Better than SMA

Figure 6 plots PP against different weights for the ties data set. Again, the SMA

baseline is shown with the brown bar, which is slightly lower relative to most of the

MIP instances. Because many of the 25 models produce the same solution, the set

of models with identical PP scores in Figure 6 is identical to the set of models with

identical officer or unit preferences in Figure 5. The only deviations from each subplot

occur when wq = 0. Specifically when wq = 0, the PP is slightly lower in the third

subplot but higher in all others. In the second subplot, the model with wq = 0 has a

higher PP than the rest of its subplot, but a lower PP than the baseline. The third
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subplot is interesting in that it has a smaller PP than the rest of its subplot where

wq = 0. The implication is that, by equally weighting officer and unit preferences,

the improvement in the outcome from the unit’s perspective slightly outweighs the

degradation in the outcome from the officer’s perspective where compared to the

baseline in which only officer preferences are considered. The fourth and fifth subplots

where wq = 0 both carry a higher officer cost and higher PP compared to the baseline.

The implication is that, when unit preferences are weighted more heavily than officer

preferences, the ensuing trade-off is such that the reduction in officer satisfaction is

greater, in terms of overall PP, than the increase in unit satisfaction. However, this

is only the case with wq = 0. Applying any nonzero weight to wq eliminates this

phenomenon. More specific differences in this particular data set against different

models are shown in Table 8.

Table 8 includes a variation not seen in the previous two figures. The MIP vari-

ation where wo = 0, wu = 0, and wq = 1 is shown in the right-most column. This is

added in effort to quantify the effect of what placing weight only on wq does to the

solution. This variation does not produce the best metrics for officers. In fact, the

second column, (1, 0, 1) has the best outcome for officers regarding cost, first pref-

erence, top three choices, and average preference received. While (0, 0, 1) does have

relatively better metrics than all other variations, it is inferior to (1, 0, 1) because

it is only concerned with the greatest preference an officer receives while (1, 0, 1) is

doing that in addition to minimizing officer cost. This also implies that (0, 0, 1) has

alternative optimal solutions; every solution where q = 7 is an alternative optimal

solution for this data set. An advantage to running the variation (0, 0, 1) identifies

what the best value of q a solution can produce.

For the remainder of this section, MIP instances where solutions are equivalent

will be represented with one instance. Specifically, the instance where (wo = 1, wu =
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Table 8: Metrics for the ties data set.

SMA
Baseline

MIP
wo = 1
wu = 0
wq = 1

MIP
wo = .75
wu = .25
wq = 1

MIP
wo = .75
wu = .25
wq = 0

MIP
wo = .5
wu = .5
wq = 0

MIP
wo = .25
wu = .75
wq = 0

MIP
wo = 0
wu = 1
wq = 0

MIP
wo = 0
wu = 0
wq = 1

Officer Cost 333 191 246 450 733 1350 2346 204
Unit Cost 2481 3718 2823 1616 1054 661 447 3633
PP 9153 7220 7082 7519 6789 10033 10605 7623
Officers Rec’d 1st 41 62 47 32 22 12 7 56
Officers Rec’d Top 3 68 87 76 55 39 22 12 85
Officer Avg Pref 3.33 1.91 2.46 4.5 7.33 13.5 23.46 2.04
q 17 7 7 22 37 67 86 7
Blocking Pairs 0 0 0 0 0 0 0 0

0, wq = 1) will represent all the solutions where wo = 1 and wu = 0 because all of

these solutions are equivalent. Instance (wo = .75, wu = .25, wq = 1) will represent

the remainder of solutions where wq ̸= 0. The remainder of the solutions are unique

and will be represented individually.

Table 9 gives comparison metrics for the different solutions produced in the

data set with ties. The first two columns, corresponding to weights of (1, 0, 1) and

(.75, .25, 1), show general improvement from the SMA to MIP, with more officers

receiving more favorable units, and the average preference matching decreasing. Al-

though (.75, .25, 1) assigns 11 officers to less favorable units, 22 are assigned more

favorably, and the average preference matching still decreases. Overall, the first two

columns are superior to the SMA from an officer satisfaction perspective. The rest of

the instances show an increase in average preference, and few officers are assigned a

more desired unit while many are assigned less favorably.

Table 9: Each column shows the officers’ changes from the SMA baseline to the
MIP instance. The majority of MIP instances produce more favorable officer

preferences. The green cells represent more favorable outcomes for officers. The red
shows less favorable outcomes.

(1, 0, 1) (.75, .25, 1) (.75, .25, 0) (.5, .5, 0) (.25, .75, 0) (0, 1, 0)
Different Unit 48 44 37 59 80 88
Less Pref’d Unit 0 11 28 51 75 86
More Pref’d Unit 34 22 3 1 0 0
Pref Avg Change -2.95 -1.97 +3.16 +6.78 +12.71 +22.87

In order to show a pattern of trends similar to Figure 5 and Figure 6, Section 4.3

36



and Section 4.3 are shown. Section 4.3 follows same trends as Figure 5. The models

where wq = 0 do not follow the rest of its respective subplot. Another shared trait

is that the first subplot, where wo = 1 and wu = 0, has a higher overall cost to

the majority of solutions, but the lowest officer cost. PP in the MIP is higher than

the baseline for all 25 models tested, which is different than Figure 6. However, the

following section will show that PP is not consistently significant.

Figure 7: Plot of weights versus matching preference cost. Each subplot has
identical solutions where wq ̸= 0.
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Figure 8: Plot of weights versus PP. Each subplot has the same PP where q ̸= 0.

4.4 Statistical Inference

In the preceding sections, select models produced different values for the set of

metrics relative to the base case. The purpose of this section is to examine whether

those differences are statistically significant by performing a series of hypothesis tests.

The following metrics are tested for significance: officer cost, product preference,

number of officers who receive first choice, number of officers who receive top three,

average officer preference matching, and q.

MIP instances (1, 0, 0), (.75, .25, 1), and (.5, .5, 0) each produce solutions with

calculated metrics whose difference from the baseline merits checking for statistical

significance. Each model is run using 15 different sets of randomly-generated data

with ties. With limited time to run the different data sets, 15 is an appropriate

number given each metric is normally distributed for that weight. The null hypoth-

esis for all of the hypotheis tests is that the SMA baseline and MIP metric values

are equal. There are 18 total tests being conducted at the significance level, α, of
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0.05. Table 10, Table 11, and Table 12 show results for two-tailed two-sample t-tests

assuming unknown but unequal variances for objective function weights of (1, 0, 1),

(.7, .25, 1), and (.5, .5, 0), respectively.

Asterisks in the rightmost column indicate that the p-value for the test is less than

the significance level, controlling for Type I error using the Bonferroni adjustment

with c = 6 hypothesis tests per model. In these cases, the null hypothesis is rejected

and the conclusion is that the metric in the MIP model is statistically lower (or

higher) than the metric in the SMA model. Almost all comparisons are significant

except PP in Table 10 and Table 12. Therefore, in all comparisons except the two

mentioned, the conclusion is that the perturbations of objective function weights has

a significant effect on the model’s performance metrics.

Table 10: Two-sample t-test assuming unequal variances run on a sample size of 15
data sets with ties for weights (1, 0, 1).

Mean
Baseline

Mean
(1, 0, 0)

Variance
Baseline

Variance
(1, 0, 0)

P(T ≤ t) two-tail

Officer Cost (TPP) 412.6 285.33 2725.97 3588.38 1.24E-06 *
PP 9253.2 8398.73 1660786.7 1428621 0.070
Num Officers Rec’d 1st 32.8 43.46 32.74 90.41 0.0011 *
Num Officers Rec’d Top 3 57.6 71.4 32.11 84.54 2.80E-06 *
Officer Avg Pref Rec’d 4.13 2.75 0.27 0.33 1.84E-07 *
q 20.2 11.67 31.46 13.52 4.992E-05 *

Table 11: Two-sample t-test assuming unequal variances run on a sample size of 15
data sets with ties for weights (.75, .25, 1).

Mean
Baseline

Mean
(.75, .25, 1)

Variance
Baseline

Variance
(.75, .25, 1)

P(T ≤ t) two-tail

Officer Cost (TPP) 412.6 285.33 2725.97 3101.7 9.77E-05 *
PP 9253.2 8138.27 1660786.7 1189011 0.016 *
Num Officers Rec’d 1st 32.8 37.8 32.74 38.6 0.029 *
Num Officers Rec’d Top 3 57.6 64.4 32.11 50.69 0.0074 *
Officer Avg Pref Rec’d 4.13 3.23 0.2726 0.31 9.77E-05 *
q 20.2 11.67 31.46 13.52 4.992E-05 *
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Table 12: Two-sample t-test assuming unequal variances run on a sample size of 15
data sets with ties for weights (.5, .5, 0).

Mean
Baseline

Mean
(.5, .5, 0)

Variance
Baseline

Variance
(.5, .5, 0)

P(T ≤ t) two-tail

Officer Cost (TPP) 412.6 885.93 2725.97 18446.4 2.29E-10 *
PP 9253.2 8385.47 1660786.7 1190406 0.057
Num Officers Rec’d 1st 32.8 16.47 32.74 31.12 1.27E-08 *
Num Officers Rec’d Top 3 57.6 31.67 32.11 51.52 1.83E-11 *
Officer Avg Pref Rec’d 4.13 8.86 0.27 1.84 2.29E-10 *
q 20.2 43.73 31.46 49.21 1.03E-10 *

4.5 Time Processing

The processing times from the data set from Section 4.3 and one of the data sets

from Section 4.4 are used to determine what the average processing time is for each

model. The mean for all data sets is 88.31 seconds with a standard deviation of 5.56

seconds. Larger scale problems will exponentially take longer, and is the reason each

data set was limited to 100 officers and 100 units. The stable marriage algorithm

took 2.08 seconds in the data set used in Section 4.3, and 1.61 seconds in the data

set from Section 4.4. The computer used to run these models has a 11th Gen Intel

Core i7-1165G7 processor with a 16 GB RAM in a Python 3.9.7 environment.
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V. Conclusions

5.1 Research and Impact

This research accomplishes three objectives. The first is to replicate results of the

current SMA-based model with a MIP. The objective allows an analyst to conduct tai-

lored impact analysis of proposed policy changes that are not as flexibly incorporated

into the SMA. The remaining two objectives consist of specific potential adjustments

to the current process.

The second objective analyzes the effects on officer assignment when incorporating

priorities other than officer satisfaction into the objective function. Specifically, unit

satisfaction and maximum disappointment experienced by an individual officer are

quantified and then weighted with 25 different combinations of weights that represent

the varied emphasis that might be given to the three priorities. The conclusion is that

any weight placed on the maximum disappointment, q, pushes the solution in favor of

officer preferences. Additionally, the different weighted models produced significant

differences to the baseline. In the majority of solutions, officer satisfaction generally

improved.

The third objective analyzes the effect of allowing officers to assign equal prefer-

ence to more than one prospective destination. Allowing ties gives the algorithm more

flexibility to give an officer a desired unit, which in turn improves officer satisfaction.

5.2 Future Research

This research allowed officers to be indifferent, but not units. No testing was done

to determine if feasible solutions are produced when units are also able to submit ties

in SMA or MIP. Testing these models, or perhaps developing new models, to allow

both sides to submit ties in preferences would be a value added extension to this
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research.

Additionally, the MIP could be tailored to the specialized needs of select units.

Adding constraints that consider different skills or requirements would appeal to tech-

nical branches. It would also reduce the number of manual changes HRC has to make

to the pure-market solution to satisfy unique requirements such as the Exceptional

Family Member Program (EFMP) or Married Army Couples Program (MACP). Cur-

rently, these programs require manual review and adjustment to the model output

followed by a rerunning of the model to reassign any broken matches.
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